通过直接激光图案化实现高柔性液态金属/光致发光聚合物电极

IF 2.7 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Su-Jeong Park, Hana Lim, Chanwoo Yang
{"title":"通过直接激光图案化实现高柔性液态金属/光致发光聚合物电极","authors":"Su-Jeong Park, Hana Lim, Chanwoo Yang","doi":"10.1680/jsuin.24.00023","DOIUrl":null,"url":null,"abstract":"A highly flexible electrode was fabricated using eutectic gallium-indium (eGaIn) liquid metal combined with an ultraviolet (UV)-curable polyurethane acrylate (PUA) polymer. The eGaIn liquid metal electrodes prepared by a negative-type direct patterning technique using a UV pulse laser can eliminate the need for complex photolithography masks. The optimal UV pulsed laser peak fluence was ∼1.43 J/cm2 to pattern and sinter the eGaIn/PUA composite electrode simultaneously. The laser-patterned eGaIn/PUA composite electrode under the optimal laser condition exhibited a remarkable electrical conductivity of 6.33 × 105 S/m with a patterning resolution of ∼40 μm. Moreover, the resistance of the electrode only deteriorated by 0.95% after 50,000 cycles of severe cyclic folding at a peak strain of 2.5% with a bending radius of 1 mm, demonstrating its exceptional flexibility and durability. These easily patterned eGaIn flexible electrodes via direct laser patterning techniques hold great promise for applications in wearable and flexible electronic devices that require extreme flexibility.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly flexible liquid metal/photocurable polymer electrodes via direct laser patterning\",\"authors\":\"Su-Jeong Park, Hana Lim, Chanwoo Yang\",\"doi\":\"10.1680/jsuin.24.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A highly flexible electrode was fabricated using eutectic gallium-indium (eGaIn) liquid metal combined with an ultraviolet (UV)-curable polyurethane acrylate (PUA) polymer. The eGaIn liquid metal electrodes prepared by a negative-type direct patterning technique using a UV pulse laser can eliminate the need for complex photolithography masks. The optimal UV pulsed laser peak fluence was ∼1.43 J/cm2 to pattern and sinter the eGaIn/PUA composite electrode simultaneously. The laser-patterned eGaIn/PUA composite electrode under the optimal laser condition exhibited a remarkable electrical conductivity of 6.33 × 105 S/m with a patterning resolution of ∼40 μm. Moreover, the resistance of the electrode only deteriorated by 0.95% after 50,000 cycles of severe cyclic folding at a peak strain of 2.5% with a bending radius of 1 mm, demonstrating its exceptional flexibility and durability. These easily patterned eGaIn flexible electrodes via direct laser patterning techniques hold great promise for applications in wearable and flexible electronic devices that require extreme flexibility.\",\"PeriodicalId\":22032,\"journal\":{\"name\":\"Surface Innovations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Innovations\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1680/jsuin.24.00023\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.24.00023","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用共晶镓-铟(eGaIn)液态金属与紫外线(UV)固化聚氨酯丙烯酸酯(PUA)聚合物相结合,制造出了一种高柔性电极。利用紫外脉冲激光的负型直接图案化技术制备的 eGaIn 液态金属电极无需复杂的光刻掩膜。最佳紫外脉冲激光峰值能量为 1.43 J/cm2,可同时对 eGaIn/PUA 复合电极进行图案化和烧结。在最佳激光条件下激光图案化的 eGaIn/PUA 复合电极的导电率达到了 6.33 × 105 S/m,图案化分辨率为 40 μm。此外,在峰值应变为 2.5%、弯曲半径为 1 毫米的条件下,电极在经过 50,000 次剧烈循环折叠后,电阻率仅下降了 0.95%,这表明电极具有出色的柔韧性和耐用性。通过直接激光图案化技术,这些易于图案化的 eGaIn 柔性电极有望应用于需要极高柔性的可穿戴和柔性电子设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly flexible liquid metal/photocurable polymer electrodes via direct laser patterning
A highly flexible electrode was fabricated using eutectic gallium-indium (eGaIn) liquid metal combined with an ultraviolet (UV)-curable polyurethane acrylate (PUA) polymer. The eGaIn liquid metal electrodes prepared by a negative-type direct patterning technique using a UV pulse laser can eliminate the need for complex photolithography masks. The optimal UV pulsed laser peak fluence was ∼1.43 J/cm2 to pattern and sinter the eGaIn/PUA composite electrode simultaneously. The laser-patterned eGaIn/PUA composite electrode under the optimal laser condition exhibited a remarkable electrical conductivity of 6.33 × 105 S/m with a patterning resolution of ∼40 μm. Moreover, the resistance of the electrode only deteriorated by 0.95% after 50,000 cycles of severe cyclic folding at a peak strain of 2.5% with a bending radius of 1 mm, demonstrating its exceptional flexibility and durability. These easily patterned eGaIn flexible electrodes via direct laser patterning techniques hold great promise for applications in wearable and flexible electronic devices that require extreme flexibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Innovations
Surface Innovations CHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍: The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace. Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信