MethylGenotyper:从 DNA 甲基化数据准确估计 SNP 基因型和遗传相关性

Yi Jiang, Minghan Qu, Minghui Jiang, Xuan Jiang, Shane Fernandez, T. Porter, Simon M. Laws, Colin L. Masters, Huan Guo, S.-M. Cheng, Chao Wang
{"title":"MethylGenotyper:从 DNA 甲基化数据准确估计 SNP 基因型和遗传相关性","authors":"Yi Jiang, Minghan Qu, Minghui Jiang, Xuan Jiang, Shane Fernandez, T. Porter, Simon M. Laws, Colin L. Masters, Huan Guo, S.-M. Cheng, Chao Wang","doi":"10.1093/gpbjnl/qzae044","DOIUrl":null,"url":null,"abstract":"\n Epigenome-wide association studies (EWAS) are susceptible to widespread confounding caused by population structure and genetic relatedness. Nevertheless, kinship estimation is challenging in EWAS without genotyping data. We proposed MethylGenotyper, a method that for the first time enables accurate genotyping at thousands of single nucleotide polymorphisms (SNPs) directly from commercial DNA methylation microarrays. We modeled the intensities of methylation probes near SNPs with a mixture of three beta distributions corresponding to different genotypes and estimated parameters with an expectation-maximization algorithm. We conducted extensive simulations to demonstrate the performance of the method. When applying MethylGenotyper to Infinium EPIC array data of 4662 Chinese, we obtained genotypes at 4319 SNPs with a concordance rate of 98.26%, enabling the identification of 255 pairs of close relatedness. Furthermore, we showed that MethylGenotyper allows for the estimation of both population structure and cryptic relatedness among 702 Australians of diverse ancestry. We have implemented MethylGenotyper in a publicly available R package (https://github.com/Yi-Jiang/MethylGenotyper) to facilitate future large-scale EWAS.","PeriodicalId":170516,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":"101 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MethylGenotyper: Accurate Estimation of SNP Genotypes and Genetic Relatedness from DNA Methylation Data\",\"authors\":\"Yi Jiang, Minghan Qu, Minghui Jiang, Xuan Jiang, Shane Fernandez, T. Porter, Simon M. Laws, Colin L. Masters, Huan Guo, S.-M. Cheng, Chao Wang\",\"doi\":\"10.1093/gpbjnl/qzae044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Epigenome-wide association studies (EWAS) are susceptible to widespread confounding caused by population structure and genetic relatedness. Nevertheless, kinship estimation is challenging in EWAS without genotyping data. We proposed MethylGenotyper, a method that for the first time enables accurate genotyping at thousands of single nucleotide polymorphisms (SNPs) directly from commercial DNA methylation microarrays. We modeled the intensities of methylation probes near SNPs with a mixture of three beta distributions corresponding to different genotypes and estimated parameters with an expectation-maximization algorithm. We conducted extensive simulations to demonstrate the performance of the method. When applying MethylGenotyper to Infinium EPIC array data of 4662 Chinese, we obtained genotypes at 4319 SNPs with a concordance rate of 98.26%, enabling the identification of 255 pairs of close relatedness. Furthermore, we showed that MethylGenotyper allows for the estimation of both population structure and cryptic relatedness among 702 Australians of diverse ancestry. We have implemented MethylGenotyper in a publicly available R package (https://github.com/Yi-Jiang/MethylGenotyper) to facilitate future large-scale EWAS.\",\"PeriodicalId\":170516,\"journal\":{\"name\":\"Genomics, Proteomics & Bioinformatics\",\"volume\":\"101 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, Proteomics & Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/gpbjnl/qzae044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gpbjnl/qzae044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全表观基因组关联研究(EWAS)容易受到种群结构和遗传亲缘关系的广泛干扰。然而,在没有基因分型数据的情况下,亲缘关系的估计在全表观遗传关联研究中具有挑战性。我们提出了 MethylGenotyper,这是一种首次能直接从商用 DNA 甲基化微阵列中对数千个单核苷酸多态性 (SNP) 进行精确基因分型的方法。我们用对应于不同基因型的三种贝塔分布的混合物来模拟 SNP 附近甲基化探针的强度,并用期望最大化算法来估计参数。我们进行了大量模拟,以证明该方法的性能。将 MethylGenotyper 应用于 4662 名中国人的 Infinium EPIC 阵列数据时,我们获得了 4319 个 SNP 的基因型,吻合率高达 98.26%,从而鉴定出 255 对近亲。此外,我们还发现 MethylGenotyper 可以估计 702 名不同血统的澳大利亚人的种群结构和隐性亲缘关系。我们已将 MethylGenotyper 移植到一个公开的 R 软件包(https://github.com/Yi-Jiang/MethylGenotyper)中,以方便将来进行大规模的 EWAS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MethylGenotyper: Accurate Estimation of SNP Genotypes and Genetic Relatedness from DNA Methylation Data
Epigenome-wide association studies (EWAS) are susceptible to widespread confounding caused by population structure and genetic relatedness. Nevertheless, kinship estimation is challenging in EWAS without genotyping data. We proposed MethylGenotyper, a method that for the first time enables accurate genotyping at thousands of single nucleotide polymorphisms (SNPs) directly from commercial DNA methylation microarrays. We modeled the intensities of methylation probes near SNPs with a mixture of three beta distributions corresponding to different genotypes and estimated parameters with an expectation-maximization algorithm. We conducted extensive simulations to demonstrate the performance of the method. When applying MethylGenotyper to Infinium EPIC array data of 4662 Chinese, we obtained genotypes at 4319 SNPs with a concordance rate of 98.26%, enabling the identification of 255 pairs of close relatedness. Furthermore, we showed that MethylGenotyper allows for the estimation of both population structure and cryptic relatedness among 702 Australians of diverse ancestry. We have implemented MethylGenotyper in a publicly available R package (https://github.com/Yi-Jiang/MethylGenotyper) to facilitate future large-scale EWAS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信