Alberto Ughetti, Veronica D’Eusanio, L. Strani, Andrea Luca Russo, Fabrizio Roncaglia
{"title":"干燥和储存条件对螺旋藻挥发性有机化合物含量的影响","authors":"Alberto Ughetti, Veronica D’Eusanio, L. Strani, Andrea Luca Russo, Fabrizio Roncaglia","doi":"10.3390/separations11060180","DOIUrl":null,"url":null,"abstract":"Spirulina platensis (SP) has gained popularity over the last few years, owing to its remarkable nutritional properties and high potential across various industrial sectors. In this study, we analyzed the volatile profile of eight SP samples from the same strain subjected to different drying (oven-drying, air-drying, and spray-drying) and storing conditions (“freshly prepared” and after 12 months of storage) using HS-SPME-GC-MS. Principal component analysis (PCA) was used as a multivariate technique to discern similarities and differences among the samples. The main aim was to assess the impact of the drying technique on the aroma profile and storage life of SP samples. Air-drying leads to the less pronounced formation of by-products related to heat treatment, such as Maillard and Strecker degradation compounds, but promotes oxidative and fermentative phenomena, with the formation of organic acids and esters, especially during storage. Thermal treatment, essential for limiting degradation and fermentation during storage and extending shelf life, alters the aroma profile through the formation of volatile compounds, such as Strecker aldehydes and linear aldehydes, from amino acid and lipid degradation. High temperatures in spray-drying favor the formation of pyrazines. The findings underscore the trade-offs inherent in choosing an appropriate drying method, thereby informing decision-making processes in industrial settings aimed at optimizing both product quality and efficiency.","PeriodicalId":21833,"journal":{"name":"Separations","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Drying and Storage Conditions on the Volatile Organic Compounds Profile of Spirulina Platensis\",\"authors\":\"Alberto Ughetti, Veronica D’Eusanio, L. Strani, Andrea Luca Russo, Fabrizio Roncaglia\",\"doi\":\"10.3390/separations11060180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spirulina platensis (SP) has gained popularity over the last few years, owing to its remarkable nutritional properties and high potential across various industrial sectors. In this study, we analyzed the volatile profile of eight SP samples from the same strain subjected to different drying (oven-drying, air-drying, and spray-drying) and storing conditions (“freshly prepared” and after 12 months of storage) using HS-SPME-GC-MS. Principal component analysis (PCA) was used as a multivariate technique to discern similarities and differences among the samples. The main aim was to assess the impact of the drying technique on the aroma profile and storage life of SP samples. Air-drying leads to the less pronounced formation of by-products related to heat treatment, such as Maillard and Strecker degradation compounds, but promotes oxidative and fermentative phenomena, with the formation of organic acids and esters, especially during storage. Thermal treatment, essential for limiting degradation and fermentation during storage and extending shelf life, alters the aroma profile through the formation of volatile compounds, such as Strecker aldehydes and linear aldehydes, from amino acid and lipid degradation. High temperatures in spray-drying favor the formation of pyrazines. The findings underscore the trade-offs inherent in choosing an appropriate drying method, thereby informing decision-making processes in industrial settings aimed at optimizing both product quality and efficiency.\",\"PeriodicalId\":21833,\"journal\":{\"name\":\"Separations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/separations11060180\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations11060180","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Influence of Drying and Storage Conditions on the Volatile Organic Compounds Profile of Spirulina Platensis
Spirulina platensis (SP) has gained popularity over the last few years, owing to its remarkable nutritional properties and high potential across various industrial sectors. In this study, we analyzed the volatile profile of eight SP samples from the same strain subjected to different drying (oven-drying, air-drying, and spray-drying) and storing conditions (“freshly prepared” and after 12 months of storage) using HS-SPME-GC-MS. Principal component analysis (PCA) was used as a multivariate technique to discern similarities and differences among the samples. The main aim was to assess the impact of the drying technique on the aroma profile and storage life of SP samples. Air-drying leads to the less pronounced formation of by-products related to heat treatment, such as Maillard and Strecker degradation compounds, but promotes oxidative and fermentative phenomena, with the formation of organic acids and esters, especially during storage. Thermal treatment, essential for limiting degradation and fermentation during storage and extending shelf life, alters the aroma profile through the formation of volatile compounds, such as Strecker aldehydes and linear aldehydes, from amino acid and lipid degradation. High temperatures in spray-drying favor the formation of pyrazines. The findings underscore the trade-offs inherent in choosing an appropriate drying method, thereby informing decision-making processes in industrial settings aimed at optimizing both product quality and efficiency.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization