T. Ramírez, H. Mora, Francisco A. Pujol, A. Maciá-Lillo, A. Jimeno-Morenilla
{"title":"通过联合自适应机器人学习管理基于人工智能的异构工业环境","authors":"T. Ramírez, H. Mora, Francisco A. Pujol, A. Maciá-Lillo, A. Jimeno-Morenilla","doi":"10.1108/ejim-09-2023-0831","DOIUrl":null,"url":null,"abstract":"PurposeThis study investigates how federated learning (FL) and human–robot collaboration (HRC) can be used to manage diverse industrial environments effectively. We aim to demonstrate how these technologies not only improve cooperation between humans and robots but also significantly enhance productivity and innovation within industrial settings. Our research proposes a new framework that integrates these advancements, paving the way for smarter and more efficient factories.Design/methodology/approachThis paper looks into the difficulties of handling diverse industrial setups and explores how combining FL and HRC in the mark of Industry 5.0 paradigm could help. A literature review is conducted to explore the theoretical insights, methods and applications of these technologies that justify our proposal. Based on this, a conceptual framework is proposed that integrates these technologies to manage heterogeneous industrial environments.FindingsThe findings drawn from the literature review performed, demonstrate that personalized FL can empower robots to evolve into intelligent collaborators capable of seamlessly aligning their actions and responses with the intricacies of factory environments and the preferences of human workers. This enhanced adaptability results in more efficient, harmonious and context-sensitive collaborations, ultimately enhancing productivity and adaptability in industrial operations.Originality/valueThis research underscores the innovative potential of personalized FL in reshaping the HRC landscape for manage heterogeneous industrial environments, marking a transformative shift from traditional automation to intelligent collaboration. It lays the foundation for a future where human–robot interactions are not only more efficient but also more harmonious and contextually aware, offering significant value to the industrial sector.","PeriodicalId":504522,"journal":{"name":"European Journal of Innovation Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Management of heterogeneous AI-based industrial environments by means of federated adaptive-robot learning\",\"authors\":\"T. Ramírez, H. Mora, Francisco A. Pujol, A. Maciá-Lillo, A. Jimeno-Morenilla\",\"doi\":\"10.1108/ejim-09-2023-0831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis study investigates how federated learning (FL) and human–robot collaboration (HRC) can be used to manage diverse industrial environments effectively. We aim to demonstrate how these technologies not only improve cooperation between humans and robots but also significantly enhance productivity and innovation within industrial settings. Our research proposes a new framework that integrates these advancements, paving the way for smarter and more efficient factories.Design/methodology/approachThis paper looks into the difficulties of handling diverse industrial setups and explores how combining FL and HRC in the mark of Industry 5.0 paradigm could help. A literature review is conducted to explore the theoretical insights, methods and applications of these technologies that justify our proposal. Based on this, a conceptual framework is proposed that integrates these technologies to manage heterogeneous industrial environments.FindingsThe findings drawn from the literature review performed, demonstrate that personalized FL can empower robots to evolve into intelligent collaborators capable of seamlessly aligning their actions and responses with the intricacies of factory environments and the preferences of human workers. This enhanced adaptability results in more efficient, harmonious and context-sensitive collaborations, ultimately enhancing productivity and adaptability in industrial operations.Originality/valueThis research underscores the innovative potential of personalized FL in reshaping the HRC landscape for manage heterogeneous industrial environments, marking a transformative shift from traditional automation to intelligent collaboration. It lays the foundation for a future where human–robot interactions are not only more efficient but also more harmonious and contextually aware, offering significant value to the industrial sector.\",\"PeriodicalId\":504522,\"journal\":{\"name\":\"European Journal of Innovation Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Innovation Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ejim-09-2023-0831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Innovation Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ejim-09-2023-0831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Management of heterogeneous AI-based industrial environments by means of federated adaptive-robot learning
PurposeThis study investigates how federated learning (FL) and human–robot collaboration (HRC) can be used to manage diverse industrial environments effectively. We aim to demonstrate how these technologies not only improve cooperation between humans and robots but also significantly enhance productivity and innovation within industrial settings. Our research proposes a new framework that integrates these advancements, paving the way for smarter and more efficient factories.Design/methodology/approachThis paper looks into the difficulties of handling diverse industrial setups and explores how combining FL and HRC in the mark of Industry 5.0 paradigm could help. A literature review is conducted to explore the theoretical insights, methods and applications of these technologies that justify our proposal. Based on this, a conceptual framework is proposed that integrates these technologies to manage heterogeneous industrial environments.FindingsThe findings drawn from the literature review performed, demonstrate that personalized FL can empower robots to evolve into intelligent collaborators capable of seamlessly aligning their actions and responses with the intricacies of factory environments and the preferences of human workers. This enhanced adaptability results in more efficient, harmonious and context-sensitive collaborations, ultimately enhancing productivity and adaptability in industrial operations.Originality/valueThis research underscores the innovative potential of personalized FL in reshaping the HRC landscape for manage heterogeneous industrial environments, marking a transformative shift from traditional automation to intelligent collaboration. It lays the foundation for a future where human–robot interactions are not only more efficient but also more harmonious and contextually aware, offering significant value to the industrial sector.