Zummurd Al Mahmoud, Babak Safaei, Saeid Sahmani, Mohammed Asmael, AliReza Setoodeh
{"title":"考虑/不考虑尺寸依赖效应的微/纳米级复合材料板型结构的线性和非线性自由振动计算分析:全面回顾","authors":"Zummurd Al Mahmoud, Babak Safaei, Saeid Sahmani, Mohammed Asmael, AliReza Setoodeh","doi":"10.1007/s11831-024-10132-4","DOIUrl":null,"url":null,"abstract":"<div><p> Recently, the mechanical performance of various mechanical, electrical, and civil structures, including static and dynamic analysis, has been widely studied. Due to the neuroma's advanced technology in various engineering fields and applications, developing small-size structures has become highly demanded for several structural geometries. One of the most important is the nano/micro-plate structure. However, the essential nature of highly lightweight material with extraordinary mechanical, electrical, physical, and material characterizations makes researchers more interested in developing composite/laminated-composite-plate structures. To comprehend the dynamical behavior, precisely the linear/nonlinear-free vibrational responses, and to represent the enhancement of several parameters such as nonlocal, geometry, boundary condition parameters, etc., on the free vibrational performance at nano/micro scale size, it is revealed that to employ all various parameters into various mathematical equations and to solve the defined governing equations by analytical, numerical, high order, and mixed solutions. Thus, the presented literature review is considered the first work focused on investigating the linear/nonlinear free vibrational behavior of plates on a small scale and the impact of various parameters on both dimensional/dimensionless natural/fundamental frequency and Eigen-value. The literature is classified based on solution type and with/without considering the size dependency effect. As a key finding, most research in the literature implemented analytical or numerical solutions. The drawback of classical plate theory can be overcome by utilizing and developing the elasticity theories. The nonlocality, weight fraction of porosity, or the reinforcements, and its distribution type of elastic foundation significantly influence the frequencies.</p></div>","PeriodicalId":55473,"journal":{"name":"Archives of Computational Methods in Engineering","volume":"32 1","pages":"113 - 232"},"PeriodicalIF":9.7000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11831-024-10132-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Computational Linear and Nonlinear Free Vibration Analyses of Micro/Nanoscale Composite Plate-Type Structures With/Without Considering Size Dependency Effect: A Comprehensive Review\",\"authors\":\"Zummurd Al Mahmoud, Babak Safaei, Saeid Sahmani, Mohammed Asmael, AliReza Setoodeh\",\"doi\":\"10.1007/s11831-024-10132-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p> Recently, the mechanical performance of various mechanical, electrical, and civil structures, including static and dynamic analysis, has been widely studied. Due to the neuroma's advanced technology in various engineering fields and applications, developing small-size structures has become highly demanded for several structural geometries. One of the most important is the nano/micro-plate structure. However, the essential nature of highly lightweight material with extraordinary mechanical, electrical, physical, and material characterizations makes researchers more interested in developing composite/laminated-composite-plate structures. To comprehend the dynamical behavior, precisely the linear/nonlinear-free vibrational responses, and to represent the enhancement of several parameters such as nonlocal, geometry, boundary condition parameters, etc., on the free vibrational performance at nano/micro scale size, it is revealed that to employ all various parameters into various mathematical equations and to solve the defined governing equations by analytical, numerical, high order, and mixed solutions. Thus, the presented literature review is considered the first work focused on investigating the linear/nonlinear free vibrational behavior of plates on a small scale and the impact of various parameters on both dimensional/dimensionless natural/fundamental frequency and Eigen-value. The literature is classified based on solution type and with/without considering the size dependency effect. As a key finding, most research in the literature implemented analytical or numerical solutions. The drawback of classical plate theory can be overcome by utilizing and developing the elasticity theories. The nonlocality, weight fraction of porosity, or the reinforcements, and its distribution type of elastic foundation significantly influence the frequencies.</p></div>\",\"PeriodicalId\":55473,\"journal\":{\"name\":\"Archives of Computational Methods in Engineering\",\"volume\":\"32 1\",\"pages\":\"113 - 232\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11831-024-10132-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Computational Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11831-024-10132-4\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Computational Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11831-024-10132-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Computational Linear and Nonlinear Free Vibration Analyses of Micro/Nanoscale Composite Plate-Type Structures With/Without Considering Size Dependency Effect: A Comprehensive Review
Recently, the mechanical performance of various mechanical, electrical, and civil structures, including static and dynamic analysis, has been widely studied. Due to the neuroma's advanced technology in various engineering fields and applications, developing small-size structures has become highly demanded for several structural geometries. One of the most important is the nano/micro-plate structure. However, the essential nature of highly lightweight material with extraordinary mechanical, electrical, physical, and material characterizations makes researchers more interested in developing composite/laminated-composite-plate structures. To comprehend the dynamical behavior, precisely the linear/nonlinear-free vibrational responses, and to represent the enhancement of several parameters such as nonlocal, geometry, boundary condition parameters, etc., on the free vibrational performance at nano/micro scale size, it is revealed that to employ all various parameters into various mathematical equations and to solve the defined governing equations by analytical, numerical, high order, and mixed solutions. Thus, the presented literature review is considered the first work focused on investigating the linear/nonlinear free vibrational behavior of plates on a small scale and the impact of various parameters on both dimensional/dimensionless natural/fundamental frequency and Eigen-value. The literature is classified based on solution type and with/without considering the size dependency effect. As a key finding, most research in the literature implemented analytical or numerical solutions. The drawback of classical plate theory can be overcome by utilizing and developing the elasticity theories. The nonlocality, weight fraction of porosity, or the reinforcements, and its distribution type of elastic foundation significantly influence the frequencies.
期刊介绍:
Archives of Computational Methods in Engineering
Aim and Scope:
Archives of Computational Methods in Engineering serves as an active forum for disseminating research and advanced practices in computational engineering, particularly focusing on mechanics and related fields. The journal emphasizes extended state-of-the-art reviews in selected areas, a unique feature of its publication.
Review Format:
Reviews published in the journal offer:
A survey of current literature
Critical exposition of topics in their full complexity
By organizing the information in this manner, readers can quickly grasp the focus, coverage, and unique features of the Archives of Computational Methods in Engineering.