ℝ中的时样零均值曲率曲面1 4

Pub Date : 2024-06-11 DOI:10.1515/gmj-2024-2028
Seher Kaya
{"title":"ℝ中的时样零均值曲率曲面1 4","authors":"Seher Kaya","doi":"10.1515/gmj-2024-2028","DOIUrl":null,"url":null,"abstract":"Abstract We are interested in the solution of the Björling problem for timelike surfaces in R 1 4 \\mathbb{R}_{1}^{4} . The main contribution of the paper is to present new and many examples of timelike zero mean curvature surfaces and give their explicit parametric equations. In particular cases, one observes that the parametric equations of these surfaces coincide with the timelike minimal surfaces in Lorentz–Minkowski 3-space.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Timelike zero mean curvature surfaces in ℝ1 4\",\"authors\":\"Seher Kaya\",\"doi\":\"10.1515/gmj-2024-2028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We are interested in the solution of the Björling problem for timelike surfaces in R 1 4 \\\\mathbb{R}_{1}^{4} . The main contribution of the paper is to present new and many examples of timelike zero mean curvature surfaces and give their explicit parametric equations. In particular cases, one observes that the parametric equations of these surfaces coincide with the timelike minimal surfaces in Lorentz–Minkowski 3-space.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们对 R 1 4 \mathbb{R}_{1}^{4} 中时间状曲面的比约林问题的解很感兴趣。本文的主要贡献在于提出了许多新的时样零均值曲率曲面的例子,并给出了它们的显式参数方程。在特殊情况下,我们会发现这些曲面的参数方程与洛伦兹-闵科夫斯基 3 空间中的时间极小曲面重合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Timelike zero mean curvature surfaces in ℝ1 4
Abstract We are interested in the solution of the Björling problem for timelike surfaces in R 1 4 \mathbb{R}_{1}^{4} . The main contribution of the paper is to present new and many examples of timelike zero mean curvature surfaces and give their explicit parametric equations. In particular cases, one observes that the parametric equations of these surfaces coincide with the timelike minimal surfaces in Lorentz–Minkowski 3-space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信