界面控制旋极分解过程中微结构演变的综合相场和机器学习研究

Owais Ahmad, Rakesh Maurya, Rajdip Mukherjee, Somnath Bhowmick
{"title":"界面控制旋极分解过程中微结构演变的综合相场和机器学习研究","authors":"Owais Ahmad, Rakesh Maurya, Rajdip Mukherjee, Somnath Bhowmick","doi":"10.4028/p-6w4ixl","DOIUrl":null,"url":null,"abstract":"This study leverages artificial intelligence (AI) to advance materials science, focusing on microstructural evolution in binary alloys during spinodal decomposition. Following the formulation of Zhu et al., we explore the microstructure evolution during interface-controlled spinodal decomposition. A comprehensive dataset captures the dynamic microstructural changes, highlighting the model's efficiency in analyzing complex data. The innovative use of an Autoencoder- ConvLSTM model enables precise, low-error microstructural transformation predictions, demonstrating AI’s potential in materials science research. This work provides a deeper understanding of material behaviors and offers new research directions.","PeriodicalId":21754,"journal":{"name":"Solid State Phenomena","volume":"9 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Phase Field and Machine Learning Study of Microstructure Evolution during Interface-Controlled Spinodal Decomposition\",\"authors\":\"Owais Ahmad, Rakesh Maurya, Rajdip Mukherjee, Somnath Bhowmick\",\"doi\":\"10.4028/p-6w4ixl\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study leverages artificial intelligence (AI) to advance materials science, focusing on microstructural evolution in binary alloys during spinodal decomposition. Following the formulation of Zhu et al., we explore the microstructure evolution during interface-controlled spinodal decomposition. A comprehensive dataset captures the dynamic microstructural changes, highlighting the model's efficiency in analyzing complex data. The innovative use of an Autoencoder- ConvLSTM model enables precise, low-error microstructural transformation predictions, demonstrating AI’s potential in materials science research. This work provides a deeper understanding of material behaviors and offers new research directions.\",\"PeriodicalId\":21754,\"journal\":{\"name\":\"Solid State Phenomena\",\"volume\":\"9 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-6w4ixl\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-6w4ixl","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用人工智能(AI)推动材料科学的发展,重点研究二元合金在旋光分解过程中的微观结构演变。按照 Zhu 等人的公式,我们探索了界面控制的旋光分解过程中的微观结构演变。一个全面的数据集捕捉了微观结构的动态变化,凸显了模型分析复杂数据的效率。自动编码器-ConvLSTM 模型的创新使用实现了精确、低误差的微观结构变化预测,展示了人工智能在材料科学研究中的潜力。这项工作加深了对材料行为的理解,并提供了新的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated Phase Field and Machine Learning Study of Microstructure Evolution during Interface-Controlled Spinodal Decomposition
This study leverages artificial intelligence (AI) to advance materials science, focusing on microstructural evolution in binary alloys during spinodal decomposition. Following the formulation of Zhu et al., we explore the microstructure evolution during interface-controlled spinodal decomposition. A comprehensive dataset captures the dynamic microstructural changes, highlighting the model's efficiency in analyzing complex data. The innovative use of an Autoencoder- ConvLSTM model enables precise, low-error microstructural transformation predictions, demonstrating AI’s potential in materials science research. This work provides a deeper understanding of material behaviors and offers new research directions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信