C. Pinto, Alireza Mousakhani Ganjeh, Francisco J. Barba, Jorge A. Saraiva
{"title":"pH值和高压巴氏灭菌法对高压贮藏和冷藏条件下产气荚膜梭菌孢子的萌发和发育的影响","authors":"C. Pinto, Alireza Mousakhani Ganjeh, Francisco J. Barba, Jorge A. Saraiva","doi":"10.3390/foods13121832","DOIUrl":null,"url":null,"abstract":"This study aimed to evaluate hyperbaric storage at room temperature (75–200 MPa, 30 days, 18–23 °C, HS/RT) on Clostridium perfringens spores in brain-heart infusion broth (BHI-broth) at pH 4.50, 6.00, and 7.50 and coconut water (pH 5.40). Both matrices were also pasteurized by high pressure processing (600 MPa, 3 min, 17 °C, HPP) to simulate commercial pasteurization followed by HS, in comparison with refrigeration (5 °C, RF). The results showed that, at AP/RT, spores’ development occurred, except at pH 4.50 in BHI-broth, while for RF, no changes occurred along storage. Under HS, at pH 4.50, neither spore development nor inactivation occurred, while at pH 6.00/7.50, inactivation occurred (≈2.0 and 1.0 logs at 200 MPa, respectively). Coconut water at AP/RT faced an increase of 1.6 logs of C. perfringens spores after 15 days, while for RF, no spore development occurred, while the inactivation of spores under HS happened (≈3 logs at 200 MPa). HPP prior to HS seems to promote a subsequent inactivation of C. perfringens spores in BHI-broth at pH 4.50, which is less evident for other pHs. For HPP coconut water, the inactivation levels under HS were lower (≈2.0 logs at 200 MPa). The Weibull model well described the inactivation pattern observed. These results suggest that HS/RT can be simultaneously used as a tool to avoid C. perfringens spores’ development, as well as for its inactivation, without the application of high temperatures that are required to inactivate these spores.","PeriodicalId":502667,"journal":{"name":"Foods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of pH and High-Pressure Pasteurization on the Germination and Development of Clostridium perfringens Spores under Hyperbaric Storage Versus Refrigeration\",\"authors\":\"C. Pinto, Alireza Mousakhani Ganjeh, Francisco J. Barba, Jorge A. Saraiva\",\"doi\":\"10.3390/foods13121832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to evaluate hyperbaric storage at room temperature (75–200 MPa, 30 days, 18–23 °C, HS/RT) on Clostridium perfringens spores in brain-heart infusion broth (BHI-broth) at pH 4.50, 6.00, and 7.50 and coconut water (pH 5.40). Both matrices were also pasteurized by high pressure processing (600 MPa, 3 min, 17 °C, HPP) to simulate commercial pasteurization followed by HS, in comparison with refrigeration (5 °C, RF). The results showed that, at AP/RT, spores’ development occurred, except at pH 4.50 in BHI-broth, while for RF, no changes occurred along storage. Under HS, at pH 4.50, neither spore development nor inactivation occurred, while at pH 6.00/7.50, inactivation occurred (≈2.0 and 1.0 logs at 200 MPa, respectively). Coconut water at AP/RT faced an increase of 1.6 logs of C. perfringens spores after 15 days, while for RF, no spore development occurred, while the inactivation of spores under HS happened (≈3 logs at 200 MPa). HPP prior to HS seems to promote a subsequent inactivation of C. perfringens spores in BHI-broth at pH 4.50, which is less evident for other pHs. For HPP coconut water, the inactivation levels under HS were lower (≈2.0 logs at 200 MPa). The Weibull model well described the inactivation pattern observed. These results suggest that HS/RT can be simultaneously used as a tool to avoid C. perfringens spores’ development, as well as for its inactivation, without the application of high temperatures that are required to inactivate these spores.\",\"PeriodicalId\":502667,\"journal\":{\"name\":\"Foods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/foods13121832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foods13121832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impact of pH and High-Pressure Pasteurization on the Germination and Development of Clostridium perfringens Spores under Hyperbaric Storage Versus Refrigeration
This study aimed to evaluate hyperbaric storage at room temperature (75–200 MPa, 30 days, 18–23 °C, HS/RT) on Clostridium perfringens spores in brain-heart infusion broth (BHI-broth) at pH 4.50, 6.00, and 7.50 and coconut water (pH 5.40). Both matrices were also pasteurized by high pressure processing (600 MPa, 3 min, 17 °C, HPP) to simulate commercial pasteurization followed by HS, in comparison with refrigeration (5 °C, RF). The results showed that, at AP/RT, spores’ development occurred, except at pH 4.50 in BHI-broth, while for RF, no changes occurred along storage. Under HS, at pH 4.50, neither spore development nor inactivation occurred, while at pH 6.00/7.50, inactivation occurred (≈2.0 and 1.0 logs at 200 MPa, respectively). Coconut water at AP/RT faced an increase of 1.6 logs of C. perfringens spores after 15 days, while for RF, no spore development occurred, while the inactivation of spores under HS happened (≈3 logs at 200 MPa). HPP prior to HS seems to promote a subsequent inactivation of C. perfringens spores in BHI-broth at pH 4.50, which is less evident for other pHs. For HPP coconut water, the inactivation levels under HS were lower (≈2.0 logs at 200 MPa). The Weibull model well described the inactivation pattern observed. These results suggest that HS/RT can be simultaneously used as a tool to avoid C. perfringens spores’ development, as well as for its inactivation, without the application of high temperatures that are required to inactivate these spores.