弱 w 投影模块注释

Q4 Mathematics
Refat Abdelmawla Khaled Assaad
{"title":"弱 w 投影模块注释","authors":"Refat Abdelmawla Khaled Assaad","doi":"10.53733/336","DOIUrl":null,"url":null,"abstract":"Let $R$ be a ring. An $R$-module $M$ is a weak $w$-projective module if ${\\rm Ext}_R^1(M,N)=0$ for all $N$ in the class of $GV$-torsion-free $R$-modules with the property that ${\\rm Ext}^k_R(T,N)=0$ for all $w$-projective $R$-modules $T$ and all integers $k\\geq1$. In this paper, we introduce and study some properties of weak $w$-projective modules. We use these modules to characterise some classical rings. For example, we will prove that a ring $R$ is a $DW$-ring if and only if every weak $w$-projective is projective; $R$ is a von Neumann regular ring if and only if every FP-projective module is weak $w$-projective if and only if every finitely presented $R$-module is weak $w$-projective; and $R$ is $w$-semi-hereditary if and only if every finite type submodule of a free module is weak $w$-projective if and only if every finitely generated ideal of $R$ is weak $w$-projective.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"69 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"note on weak w-projective modules\",\"authors\":\"Refat Abdelmawla Khaled Assaad\",\"doi\":\"10.53733/336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a ring. An $R$-module $M$ is a weak $w$-projective module if ${\\\\rm Ext}_R^1(M,N)=0$ for all $N$ in the class of $GV$-torsion-free $R$-modules with the property that ${\\\\rm Ext}^k_R(T,N)=0$ for all $w$-projective $R$-modules $T$ and all integers $k\\\\geq1$. In this paper, we introduce and study some properties of weak $w$-projective modules. We use these modules to characterise some classical rings. For example, we will prove that a ring $R$ is a $DW$-ring if and only if every weak $w$-projective is projective; $R$ is a von Neumann regular ring if and only if every FP-projective module is weak $w$-projective if and only if every finitely presented $R$-module is weak $w$-projective; and $R$ is $w$-semi-hereditary if and only if every finite type submodule of a free module is weak $w$-projective if and only if every finitely generated ideal of $R$ is weak $w$-projective.\",\"PeriodicalId\":30137,\"journal\":{\"name\":\"New Zealand Journal of Mathematics\",\"volume\":\"69 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Zealand Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53733/336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

让 $R$ 是一个环。如果对于所有 $w$ 投射 $R$ 模块 $T$ 和所有整数 $k\geq1$ 中所有 $N$ 的 $GV$ 无扭转 $R$ 模块类中的 ${rm Ext}_R^1(M,N)=0$ ,并且对于所有 $w$ 投射 $R$ 模块 $T$ 和所有整数 $k\geq1$ 的属性 ${\rm Ext}^k_R(T,N)=0$ ,那么 $R$ 模块 $M$ 是弱 $w$ 投射模块。在本文中,我们介绍并研究了弱 $w$ 投射模块的一些性质。我们用这些模块来描述一些经典环。例如,我们将证明,当且仅当每个弱 $w$ 投射都是投影时,环 $R$ 是 $DW$ 环;当且仅当每个 FP 投射模块都是弱 $w$ 投射时,环 $R$ 是冯-诺依曼正则环;当且仅当每个有限呈现的 $R$ 模块都是弱 $w$ 投射时,环 $R$ 是 $DW$ 环;只有当且仅当 $R$ 的每个有限生成理想都是弱 $w$ 投射时,自由模块的每个有限类型子模块才是弱 $w$ 投射;并且当且仅当 $R$ 的每个有限生成理想都是弱 $w$ 投射时,$R$ 是 $w$ 半遗传环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
note on weak w-projective modules
Let $R$ be a ring. An $R$-module $M$ is a weak $w$-projective module if ${\rm Ext}_R^1(M,N)=0$ for all $N$ in the class of $GV$-torsion-free $R$-modules with the property that ${\rm Ext}^k_R(T,N)=0$ for all $w$-projective $R$-modules $T$ and all integers $k\geq1$. In this paper, we introduce and study some properties of weak $w$-projective modules. We use these modules to characterise some classical rings. For example, we will prove that a ring $R$ is a $DW$-ring if and only if every weak $w$-projective is projective; $R$ is a von Neumann regular ring if and only if every FP-projective module is weak $w$-projective if and only if every finitely presented $R$-module is weak $w$-projective; and $R$ is $w$-semi-hereditary if and only if every finite type submodule of a free module is weak $w$-projective if and only if every finitely generated ideal of $R$ is weak $w$-projective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Zealand Journal of Mathematics
New Zealand Journal of Mathematics Mathematics-Algebra and Number Theory
CiteScore
1.10
自引率
0.00%
发文量
11
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信