{"title":"用有限差分法从积分观测中识别抛物线方程的来源","authors":"Nguyen Thi Ngoc Oanh","doi":"10.1007/s40306-024-00536-6","DOIUrl":null,"url":null,"abstract":"<div><p>We study the problem of reconstructing an unknown source term in parabolic equations from integral observations. It is reformulated into a variational problem in combination with Tikhonov regularization and then a formula for the gradient of the objective functional to be minimized is computed via a solution of an adjoint problem. The variational problem is discretized by the splitting method based on finite difference schemes and solved by the conjugate gradient method. A numerical scheme for numerically estimating singular values of the solution operator in the inverse problem is suggested. Some numerical examples are presented to show the efficiency of the method.</p></div>","PeriodicalId":45527,"journal":{"name":"Acta Mathematica Vietnamica","volume":"49 2","pages":"283 - 308"},"PeriodicalIF":0.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Source Identification for Parabolic Equations from Integral Observations by the Finite Difference Splitting Method\",\"authors\":\"Nguyen Thi Ngoc Oanh\",\"doi\":\"10.1007/s40306-024-00536-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the problem of reconstructing an unknown source term in parabolic equations from integral observations. It is reformulated into a variational problem in combination with Tikhonov regularization and then a formula for the gradient of the objective functional to be minimized is computed via a solution of an adjoint problem. The variational problem is discretized by the splitting method based on finite difference schemes and solved by the conjugate gradient method. A numerical scheme for numerically estimating singular values of the solution operator in the inverse problem is suggested. Some numerical examples are presented to show the efficiency of the method.</p></div>\",\"PeriodicalId\":45527,\"journal\":{\"name\":\"Acta Mathematica Vietnamica\",\"volume\":\"49 2\",\"pages\":\"283 - 308\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Vietnamica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40306-024-00536-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Vietnamica","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40306-024-00536-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Source Identification for Parabolic Equations from Integral Observations by the Finite Difference Splitting Method
We study the problem of reconstructing an unknown source term in parabolic equations from integral observations. It is reformulated into a variational problem in combination with Tikhonov regularization and then a formula for the gradient of the objective functional to be minimized is computed via a solution of an adjoint problem. The variational problem is discretized by the splitting method based on finite difference schemes and solved by the conjugate gradient method. A numerical scheme for numerically estimating singular values of the solution operator in the inverse problem is suggested. Some numerical examples are presented to show the efficiency of the method.
期刊介绍:
Acta Mathematica Vietnamica is a peer-reviewed mathematical journal. The journal publishes original papers of high quality in all branches of Mathematics with strong focus on Algebraic Geometry and Commutative Algebra, Algebraic Topology, Complex Analysis, Dynamical Systems, Optimization and Partial Differential Equations.