{"title":"开发 FIGARCH 模型的样本外预测公式","authors":"Debopam Rakshit, R. Paul","doi":"10.3233/mas-241510","DOIUrl":null,"url":null,"abstract":"Volatility is a matter of concern for time series modeling. It provides valuable insights into the fluctuation and stability of concerning variables over time. Volatility patterns in historical data can provide valuable information for predicting future behaviour. Nonlinear time series models such as the autoregressive conditional heteroscedastic (ARCH) and the generalized version of the ARCH model, i.e. generalized ARCH (GARCH) models are popularly used for capturing the volatility of a time series. The realization of any time series may have significant statistical dependencies on its distant counterpart. This phenomenon is known as the long memory process. Long memory structure can also be present in volatility. Fractionally integrated volatility models such as the fractionally integrated GARCH (FIGARCH) model can be used to capture the long memory in volatility. In this paper, we derived the out-of-sample forecast formulae along with the forecast error variances for the AR (1) -FIGARCH (1, d, 1) model by recursive use of conditional expectations and conditional variances. For empirical illustration, the modal spot prices of onion for Delhi, Lasalgaon and Bengaluru markets, India and S&P 500 index (close) data are used.","PeriodicalId":35000,"journal":{"name":"Model Assisted Statistics and Applications","volume":"84 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of out-of-sample forecast formulae for the FIGARCH model\",\"authors\":\"Debopam Rakshit, R. Paul\",\"doi\":\"10.3233/mas-241510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Volatility is a matter of concern for time series modeling. It provides valuable insights into the fluctuation and stability of concerning variables over time. Volatility patterns in historical data can provide valuable information for predicting future behaviour. Nonlinear time series models such as the autoregressive conditional heteroscedastic (ARCH) and the generalized version of the ARCH model, i.e. generalized ARCH (GARCH) models are popularly used for capturing the volatility of a time series. The realization of any time series may have significant statistical dependencies on its distant counterpart. This phenomenon is known as the long memory process. Long memory structure can also be present in volatility. Fractionally integrated volatility models such as the fractionally integrated GARCH (FIGARCH) model can be used to capture the long memory in volatility. In this paper, we derived the out-of-sample forecast formulae along with the forecast error variances for the AR (1) -FIGARCH (1, d, 1) model by recursive use of conditional expectations and conditional variances. For empirical illustration, the modal spot prices of onion for Delhi, Lasalgaon and Bengaluru markets, India and S&P 500 index (close) data are used.\",\"PeriodicalId\":35000,\"journal\":{\"name\":\"Model Assisted Statistics and Applications\",\"volume\":\"84 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Model Assisted Statistics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/mas-241510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Assisted Statistics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mas-241510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Development of out-of-sample forecast formulae for the FIGARCH model
Volatility is a matter of concern for time series modeling. It provides valuable insights into the fluctuation and stability of concerning variables over time. Volatility patterns in historical data can provide valuable information for predicting future behaviour. Nonlinear time series models such as the autoregressive conditional heteroscedastic (ARCH) and the generalized version of the ARCH model, i.e. generalized ARCH (GARCH) models are popularly used for capturing the volatility of a time series. The realization of any time series may have significant statistical dependencies on its distant counterpart. This phenomenon is known as the long memory process. Long memory structure can also be present in volatility. Fractionally integrated volatility models such as the fractionally integrated GARCH (FIGARCH) model can be used to capture the long memory in volatility. In this paper, we derived the out-of-sample forecast formulae along with the forecast error variances for the AR (1) -FIGARCH (1, d, 1) model by recursive use of conditional expectations and conditional variances. For empirical illustration, the modal spot prices of onion for Delhi, Lasalgaon and Bengaluru markets, India and S&P 500 index (close) data are used.
期刊介绍:
Model Assisted Statistics and Applications is a peer reviewed international journal. Model Assisted Statistics means an improvement of inference and analysis by use of correlated information, or an underlying theoretical or design model. This might be the design, adjustment, estimation, or analytical phase of statistical project. This information may be survey generated or coming from an independent source. Original papers in the field of sampling theory, econometrics, time-series, design of experiments, and multivariate analysis will be preferred. Papers of both applied and theoretical topics are acceptable.