{"title":"利用河水磁化对玉米产量以及灌溉水和土壤性质的影响","authors":"Alaa Imad Hameed, Nadira Abbas Mohammad","doi":"10.56294/sctconf2024874","DOIUrl":null,"url":null,"abstract":"This study aims at studying the effect of using two different intensities of magnetization of irrigation water on some properties of irrigation water and soil and on the yield of corn. The field of corn is divided into three sectors (R1: non-magnetized river water, R2: magnetized river water with 1000 gauss, R3: magnetized river water with 3000 gauss. Examinations are made on the physical and chemical properties of the irrigation water, EC, PH, anions and cations for both water and soil as well as the productivity of the corn plant. The results indicate that the magnetization of irrigation water with an intensity of 1000 gauss (R2) had a positive effect on all properties of soil, water and moisture content in addition to productivity. Where the value of total dissolved salts (TDS), EC, and the values of K, Na, Mg, and Ca ions decreased for irrigation water. While the PH value of irrigation water increased at R2, this increase in pH may be due to the formation of more bicarbonate, calcium and hydroxide ions, which reduce acidity. With stability the value of these characteristics at the intensity of 3000 gauss (R3), the matter which indicates that this intensity is not useful for improving water properties. An increase in the value of (N, B, K) was observed in both leaves and seeds of corn when magnetized at an intensity of 1000 gauss. The magnetization of irrigation water at an intensity of 1000 gauss increases the yield of corn plant more than the magnetized 3000 gauss.","PeriodicalId":270620,"journal":{"name":"Salud, Ciencia y Tecnología - Serie de Conferencias","volume":"85 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of using river water magnetization on corn yield and the properties of irrigation water and soil\",\"authors\":\"Alaa Imad Hameed, Nadira Abbas Mohammad\",\"doi\":\"10.56294/sctconf2024874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims at studying the effect of using two different intensities of magnetization of irrigation water on some properties of irrigation water and soil and on the yield of corn. The field of corn is divided into three sectors (R1: non-magnetized river water, R2: magnetized river water with 1000 gauss, R3: magnetized river water with 3000 gauss. Examinations are made on the physical and chemical properties of the irrigation water, EC, PH, anions and cations for both water and soil as well as the productivity of the corn plant. The results indicate that the magnetization of irrigation water with an intensity of 1000 gauss (R2) had a positive effect on all properties of soil, water and moisture content in addition to productivity. Where the value of total dissolved salts (TDS), EC, and the values of K, Na, Mg, and Ca ions decreased for irrigation water. While the PH value of irrigation water increased at R2, this increase in pH may be due to the formation of more bicarbonate, calcium and hydroxide ions, which reduce acidity. With stability the value of these characteristics at the intensity of 3000 gauss (R3), the matter which indicates that this intensity is not useful for improving water properties. An increase in the value of (N, B, K) was observed in both leaves and seeds of corn when magnetized at an intensity of 1000 gauss. The magnetization of irrigation water at an intensity of 1000 gauss increases the yield of corn plant more than the magnetized 3000 gauss.\",\"PeriodicalId\":270620,\"journal\":{\"name\":\"Salud, Ciencia y Tecnología - Serie de Conferencias\",\"volume\":\"85 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Salud, Ciencia y Tecnología - Serie de Conferencias\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56294/sctconf2024874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Salud, Ciencia y Tecnología - Serie de Conferencias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56294/sctconf2024874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The effect of using river water magnetization on corn yield and the properties of irrigation water and soil
This study aims at studying the effect of using two different intensities of magnetization of irrigation water on some properties of irrigation water and soil and on the yield of corn. The field of corn is divided into three sectors (R1: non-magnetized river water, R2: magnetized river water with 1000 gauss, R3: magnetized river water with 3000 gauss. Examinations are made on the physical and chemical properties of the irrigation water, EC, PH, anions and cations for both water and soil as well as the productivity of the corn plant. The results indicate that the magnetization of irrigation water with an intensity of 1000 gauss (R2) had a positive effect on all properties of soil, water and moisture content in addition to productivity. Where the value of total dissolved salts (TDS), EC, and the values of K, Na, Mg, and Ca ions decreased for irrigation water. While the PH value of irrigation water increased at R2, this increase in pH may be due to the formation of more bicarbonate, calcium and hydroxide ions, which reduce acidity. With stability the value of these characteristics at the intensity of 3000 gauss (R3), the matter which indicates that this intensity is not useful for improving water properties. An increase in the value of (N, B, K) was observed in both leaves and seeds of corn when magnetized at an intensity of 1000 gauss. The magnetization of irrigation water at an intensity of 1000 gauss increases the yield of corn plant more than the magnetized 3000 gauss.