热压块装置中黑色金属刨花的火焰感应加热技术

O. M. Dyakonov, V. J. Sereda
{"title":"热压块装置中黑色金属刨花的火焰感应加热技术","authors":"O. M. Dyakonov, V. J. Sereda","doi":"10.21122/1683-6065-2024-2-72-81","DOIUrl":null,"url":null,"abstract":"As a result of the study of flame‑induction heating of steel and cast iron shavings, optimal heating modes, dimensions of the furnace and the ratio of the sizes of its components (gas‑flame and induction heaters) were established, which served as the basis for the development of a new heating technology, which ensures minimization of dimensions in comparison with known analogues, increasing the productivity and efficiency of the furnace. It has been established that at the stage of evaporation and removal of water vapor and light oil fractions from the chips in the temperature range of 100–550 °C until the optimal oil concentration of 1.5–3.0 % is achieved, among all known methods of muffle heating, gas‑flame heating is the most economical and productive heating, and subsequently, when heating a dehydrated porous mass of metal with a density of 1100–1700 kg/m3 to 850 °C – induction heating in an atmosphere of products of thermal sublimation and destruction of coolant. It is advisable to carry out induction heating with a current frequency of 2.0–2.4 kHz with a ratio of the lengths of the gas‑flame and induction heating zones of 2.0–2.5 and the dimensions of the inductor (height to hole diameter) of 3.7–4.0. The degree of oxidation of hot‑pressed briquettes corresponds to the initial oxygen content in the chips: for steel – 1.3–1.7 %, for cast iron – 0.46–0.47 %. The data obtained made it possible to develop a technology for flame‑induction heating of ferrous metal shavings, as well as the design of a small‑sized furnace with a specific productivity of 6500–9500 kg/m2·h and an efficiency of 40–45 %.","PeriodicalId":278844,"journal":{"name":"Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY)","volume":"89 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technology of flame‑induction heating of ferrous metal shavings in hot briquetting installations\",\"authors\":\"O. M. Dyakonov, V. J. Sereda\",\"doi\":\"10.21122/1683-6065-2024-2-72-81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a result of the study of flame‑induction heating of steel and cast iron shavings, optimal heating modes, dimensions of the furnace and the ratio of the sizes of its components (gas‑flame and induction heaters) were established, which served as the basis for the development of a new heating technology, which ensures minimization of dimensions in comparison with known analogues, increasing the productivity and efficiency of the furnace. It has been established that at the stage of evaporation and removal of water vapor and light oil fractions from the chips in the temperature range of 100–550 °C until the optimal oil concentration of 1.5–3.0 % is achieved, among all known methods of muffle heating, gas‑flame heating is the most economical and productive heating, and subsequently, when heating a dehydrated porous mass of metal with a density of 1100–1700 kg/m3 to 850 °C – induction heating in an atmosphere of products of thermal sublimation and destruction of coolant. It is advisable to carry out induction heating with a current frequency of 2.0–2.4 kHz with a ratio of the lengths of the gas‑flame and induction heating zones of 2.0–2.5 and the dimensions of the inductor (height to hole diameter) of 3.7–4.0. The degree of oxidation of hot‑pressed briquettes corresponds to the initial oxygen content in the chips: for steel – 1.3–1.7 %, for cast iron – 0.46–0.47 %. The data obtained made it possible to develop a technology for flame‑induction heating of ferrous metal shavings, as well as the design of a small‑sized furnace with a specific productivity of 6500–9500 kg/m2·h and an efficiency of 40–45 %.\",\"PeriodicalId\":278844,\"journal\":{\"name\":\"Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY)\",\"volume\":\"89 16\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21122/1683-6065-2024-2-72-81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/1683-6065-2024-2-72-81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过对火焰感应加热钢屑和铸铁屑的研究,确定了最佳加热模式、加热炉的尺寸及其组件(气体火焰加热器和感应加热器)的尺寸比例,并以此为基础开发了一种新的加热技术,与已知的类似技术相比,该技术可确保尺寸最小化,提高加热炉的生产率和效率。已经证实,在 100-550 °C 的温度范围内,在蒸发和去除切片中的水蒸气和轻油馏分直至达到 1.5-3.0 % 的最佳油浓度的阶段,在所有已知的马弗炉加热方法中,气体火焰加热是最经济、最有效的加热方法,随后,当加热密度为 1100-1700 kg/m3 的脱水多孔金属块至 850 °C 时,在热升华产物和冷却剂破坏的气氛中进行感应加热。感应加热的电流频率最好为 2.0-2.4 kHz,气体火焰区和感应加热区的长度比为 2.0-2.5 ,感应器的尺寸(高度与孔径之比)为 3.7-4.0。热压块的氧化程度与切屑中的初始含氧量相对应:钢为 1.3-1.7%,铸铁为 0.46-0.47%。根据所获得的数据,开发出了黑色金属刨花火焰加热技术,并设计出了一个小型熔炉,其具体生产率为 6500-9500 kg/m2-h,效率为 40-45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Technology of flame‑induction heating of ferrous metal shavings in hot briquetting installations
As a result of the study of flame‑induction heating of steel and cast iron shavings, optimal heating modes, dimensions of the furnace and the ratio of the sizes of its components (gas‑flame and induction heaters) were established, which served as the basis for the development of a new heating technology, which ensures minimization of dimensions in comparison with known analogues, increasing the productivity and efficiency of the furnace. It has been established that at the stage of evaporation and removal of water vapor and light oil fractions from the chips in the temperature range of 100–550 °C until the optimal oil concentration of 1.5–3.0 % is achieved, among all known methods of muffle heating, gas‑flame heating is the most economical and productive heating, and subsequently, when heating a dehydrated porous mass of metal with a density of 1100–1700 kg/m3 to 850 °C – induction heating in an atmosphere of products of thermal sublimation and destruction of coolant. It is advisable to carry out induction heating with a current frequency of 2.0–2.4 kHz with a ratio of the lengths of the gas‑flame and induction heating zones of 2.0–2.5 and the dimensions of the inductor (height to hole diameter) of 3.7–4.0. The degree of oxidation of hot‑pressed briquettes corresponds to the initial oxygen content in the chips: for steel – 1.3–1.7 %, for cast iron – 0.46–0.47 %. The data obtained made it possible to develop a technology for flame‑induction heating of ferrous metal shavings, as well as the design of a small‑sized furnace with a specific productivity of 6500–9500 kg/m2·h and an efficiency of 40–45 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信