季铵盐化合物与精油成分的协同杀菌作用

Foods Pub Date : 2024-06-11 DOI:10.3390/foods13121831
Adrián Pedreira, S. Fernandes, M. Simões, Míriam R. García, José Antonio Vázquez
{"title":"季铵盐化合物与精油成分的协同杀菌作用","authors":"Adrián Pedreira, S. Fernandes, M. Simões, Míriam R. García, José Antonio Vázquez","doi":"10.3390/foods13121831","DOIUrl":null,"url":null,"abstract":"Antimicrobial tolerance is a significant concern in the food industry, as it poses risks to food safety and public health. To overcome this challenge, synergistic combinations of antimicrobials have emerged as a potential solution. In this study, the combinations of two essential oil constituents (EOCs), namely carvacrol (CAR) and eugenol (EUG), with the quaternary ammonium compounds (QACs) benzalkonium chloride (BAC) and didecyldimethylammonium chloride (DDAC) were evaluated for their antimicrobial effects against Escherichia coli and Bacillus cereus, two common foodborne bacteria. The checkerboard assay was employed to determine the fractional inhibitory concentration index (FICI) and the fractional bactericidal concentration index (FBCI), indicating the presence of bactericidal, but not bacteriostatic, synergy in all QAC–EOC combinations. Bactericidal synergism was clearly supported by Bliss independence analysis. The bactericidal activity of the promising synergistic combinations was further validated by time–kill curves, achieving a >4-log10 reduction of initial bacterial load, which is significant compared to typical industry standards. The combinations containing DDAC showed the highest efficiency, resulting in the eradication of bacterial population in less than 2–4 h. These findings emphasize the importance of considering both bacteriostatic and bactericidal effects when evaluating antimicrobial combinations and the potential of EOC–QAC combinations for sanitization and disinfection in the food industry.","PeriodicalId":502667,"journal":{"name":"Foods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Bactericidal Effects of Quaternary Ammonium Compounds with Essential Oil Constituents\",\"authors\":\"Adrián Pedreira, S. Fernandes, M. Simões, Míriam R. García, José Antonio Vázquez\",\"doi\":\"10.3390/foods13121831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antimicrobial tolerance is a significant concern in the food industry, as it poses risks to food safety and public health. To overcome this challenge, synergistic combinations of antimicrobials have emerged as a potential solution. In this study, the combinations of two essential oil constituents (EOCs), namely carvacrol (CAR) and eugenol (EUG), with the quaternary ammonium compounds (QACs) benzalkonium chloride (BAC) and didecyldimethylammonium chloride (DDAC) were evaluated for their antimicrobial effects against Escherichia coli and Bacillus cereus, two common foodborne bacteria. The checkerboard assay was employed to determine the fractional inhibitory concentration index (FICI) and the fractional bactericidal concentration index (FBCI), indicating the presence of bactericidal, but not bacteriostatic, synergy in all QAC–EOC combinations. Bactericidal synergism was clearly supported by Bliss independence analysis. The bactericidal activity of the promising synergistic combinations was further validated by time–kill curves, achieving a >4-log10 reduction of initial bacterial load, which is significant compared to typical industry standards. The combinations containing DDAC showed the highest efficiency, resulting in the eradication of bacterial population in less than 2–4 h. These findings emphasize the importance of considering both bacteriostatic and bactericidal effects when evaluating antimicrobial combinations and the potential of EOC–QAC combinations for sanitization and disinfection in the food industry.\",\"PeriodicalId\":502667,\"journal\":{\"name\":\"Foods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/foods13121831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foods13121831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

抗菌剂耐受性是食品工业的一个重大问题,因为它会给食品安全和公众健康带来风险。为了克服这一挑战,抗菌剂的协同组合已成为一种潜在的解决方案。本研究评估了两种精油成分(即香芹酚(CAR)和丁香酚(EUG))与季铵化合物(QAC)苯扎氯铵(BAC)和十二烷基二甲基氯化铵(DDAC)的组合对大肠杆菌和蜡样芽孢杆菌这两种常见食源性细菌的抗菌效果。采用棋盘试验确定了部分抑菌浓度指数(FICI)和部分杀菌浓度指数(FBCI),表明所有 QAC-EOC 组合都存在杀菌协同作用,而非抑菌协同作用。布利斯独立性分析明确支持杀菌协同作用。时间杀灭曲线进一步验证了有前景的协同组合的杀菌活性,其初始细菌负荷减少量大于 4-log10,这与典型的行业标准相比意义重大。这些发现强调了在评估抗菌剂组合时同时考虑抑菌和杀菌效果的重要性,以及 EOC-QAC 组合在食品工业消毒和杀菌方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergistic Bactericidal Effects of Quaternary Ammonium Compounds with Essential Oil Constituents
Antimicrobial tolerance is a significant concern in the food industry, as it poses risks to food safety and public health. To overcome this challenge, synergistic combinations of antimicrobials have emerged as a potential solution. In this study, the combinations of two essential oil constituents (EOCs), namely carvacrol (CAR) and eugenol (EUG), with the quaternary ammonium compounds (QACs) benzalkonium chloride (BAC) and didecyldimethylammonium chloride (DDAC) were evaluated for their antimicrobial effects against Escherichia coli and Bacillus cereus, two common foodborne bacteria. The checkerboard assay was employed to determine the fractional inhibitory concentration index (FICI) and the fractional bactericidal concentration index (FBCI), indicating the presence of bactericidal, but not bacteriostatic, synergy in all QAC–EOC combinations. Bactericidal synergism was clearly supported by Bliss independence analysis. The bactericidal activity of the promising synergistic combinations was further validated by time–kill curves, achieving a >4-log10 reduction of initial bacterial load, which is significant compared to typical industry standards. The combinations containing DDAC showed the highest efficiency, resulting in the eradication of bacterial population in less than 2–4 h. These findings emphasize the importance of considering both bacteriostatic and bactericidal effects when evaluating antimicrobial combinations and the potential of EOC–QAC combinations for sanitization and disinfection in the food industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信