论描述算子矩阵频谱特性的非严格正弦度量标准

Pub Date : 2024-06-11 DOI:10.1515/gmj-2024-2029
S. Bouzidi, Ines Walha
{"title":"论描述算子矩阵频谱特性的非严格正弦度量标准","authors":"S. Bouzidi, Ines Walha","doi":"10.1515/gmj-2024-2029","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we are interested to formulate new assumptions on the entries of an unbounded 3 × 3 3\\times 3 block operator matrix defined with a maximal domain on the product of Banach spaces guaranteeing its corresponding Frobenius–Schur formula. Our approach allows us to derive some original stability results intervening in the theory of perturbed lower semi-Fredholm operators involving the concept of a measure of non-strict cosingularity perturbation. A new technique is presented to investigate the Weidmann and defect essential spectra of the closure of such model of operator matrix via new criterion of perturbation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the criteria of a measure of non-strict cosingularity in the description of spectral properties of operator matrix\",\"authors\":\"S. Bouzidi, Ines Walha\",\"doi\":\"10.1515/gmj-2024-2029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we are interested to formulate new assumptions on the entries of an unbounded 3 × 3 3\\\\times 3 block operator matrix defined with a maximal domain on the product of Banach spaces guaranteeing its corresponding Frobenius–Schur formula. Our approach allows us to derive some original stability results intervening in the theory of perturbed lower semi-Fredholm operators involving the concept of a measure of non-strict cosingularity perturbation. A new technique is presented to investigate the Weidmann and defect essential spectra of the closure of such model of operator matrix via new criterion of perturbation.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2024-2029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在本文中,我们有兴趣对一个无界 3 × 3 3 (times 3)块算子矩阵的项提出新的假设,该矩阵定义在巴拿赫空间乘积上的最大域,保证其相应的 Frobenius-Schur 公式。我们的方法使我们能够推导出一些原创的稳定性结果,这些结果涉及扰动的下半弗雷德霍姆算子理论,其中涉及非严格正弦扰动度量的概念。我们提出了一种新技术,通过新的扰动准则来研究这种算子矩阵模型闭合的魏德曼和缺陷本质谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the criteria of a measure of non-strict cosingularity in the description of spectral properties of operator matrix
Abstract In this paper, we are interested to formulate new assumptions on the entries of an unbounded 3 × 3 3\times 3 block operator matrix defined with a maximal domain on the product of Banach spaces guaranteeing its corresponding Frobenius–Schur formula. Our approach allows us to derive some original stability results intervening in the theory of perturbed lower semi-Fredholm operators involving the concept of a measure of non-strict cosingularity perturbation. A new technique is presented to investigate the Weidmann and defect essential spectra of the closure of such model of operator matrix via new criterion of perturbation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信