超弹性固体与流体相互作用的失效建模

IF 2.8 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Phanindra Paravastu, Srikanth Vedantam
{"title":"超弹性固体与流体相互作用的失效建模","authors":"Phanindra Paravastu,&nbsp;Srikanth Vedantam","doi":"10.1007/s40571-024-00784-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a coupled smoothed particle hydrodynamics and a constitutively informed particle dynamics model of a hyperelastic material. The proposed coupling strategy accurately transmits the forces between the fluid and solid, conserving momentum strictly. Using this model, we simulate the role of fluid impact on failure of a nonlinear elastic solid in the case of a canonical dam break problem. The location of the notch on the failure of the obstacle is found to be critical. Several modes of failure of the obstacle are observed, depending on the location of the notch and the height of the obstacle. Under some conditions, multiple failures of the obstacle occur simultaneously.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"12 1","pages":"153 - 164"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling failure of hyperelastic solids interacting with fluids\",\"authors\":\"Phanindra Paravastu,&nbsp;Srikanth Vedantam\",\"doi\":\"10.1007/s40571-024-00784-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present a coupled smoothed particle hydrodynamics and a constitutively informed particle dynamics model of a hyperelastic material. The proposed coupling strategy accurately transmits the forces between the fluid and solid, conserving momentum strictly. Using this model, we simulate the role of fluid impact on failure of a nonlinear elastic solid in the case of a canonical dam break problem. The location of the notch on the failure of the obstacle is found to be critical. Several modes of failure of the obstacle are observed, depending on the location of the notch and the height of the obstacle. Under some conditions, multiple failures of the obstacle occur simultaneously.</p></div>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"12 1\",\"pages\":\"153 - 164\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40571-024-00784-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-024-00784-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个耦合的光滑粒子流体力学和一个本构通知的超弹性材料的粒子动力学模型。所提出的耦合策略准确地传递了流体和固体之间的力,严格地保持了动量。利用该模型,我们模拟了典型溃坝问题中流体冲击对非线性弹性固体破坏的作用。在障碍物的失败上发现缺口的位置是至关重要的。根据缺口的位置和障碍物的高度,观察到障碍物的几种失效模式。在某些条件下,障碍物的多个失效同时发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modeling failure of hyperelastic solids interacting with fluids

Modeling failure of hyperelastic solids interacting with fluids

Modeling failure of hyperelastic solids interacting with fluids

In this paper, we present a coupled smoothed particle hydrodynamics and a constitutively informed particle dynamics model of a hyperelastic material. The proposed coupling strategy accurately transmits the forces between the fluid and solid, conserving momentum strictly. Using this model, we simulate the role of fluid impact on failure of a nonlinear elastic solid in the case of a canonical dam break problem. The location of the notch on the failure of the obstacle is found to be critical. Several modes of failure of the obstacle are observed, depending on the location of the notch and the height of the obstacle. Under some conditions, multiple failures of the obstacle occur simultaneously.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Particle Mechanics
Computational Particle Mechanics Mathematics-Computational Mathematics
CiteScore
5.70
自引率
9.10%
发文量
75
期刊介绍: GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research. SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including: (a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc., (b) Particles representing material phases in continua at the meso-, micro-and nano-scale and (c) Particles as a discretization unit in continua and discontinua in numerical methods such as Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信