从移动测绘系统测量的点云中提取砌块墙体

Taiga Odaka, Hiroki Harada, Kei Otomo, Kiichiro Ishikawa
{"title":"从移动测绘系统测量的点云中提取砌块墙体","authors":"Taiga Odaka, Hiroki Harada, Kei Otomo, Kiichiro Ishikawa","doi":"10.5194/isprs-archives-xlviii-2-2024-309-2024","DOIUrl":null,"url":null,"abstract":"Abstract. To solve the problem of collapsing block walls widely used in Japan, this study proposes a method for extracting block walls using 3D point cloud data measured by the Mobile Mapping System (MMS). Unlike conventional methods, this method identifies block walls based on geometric features without relying on MMS trajectory data or deep learning inference results. In addition, the computational load is low and manual correction can be minimized. In our experiments, we used point cloud data collected in urban areas in Japan and achieved a precision of 0.750, recall of 0.810, and F-measure of 0.779. The results demonstrate the effectiveness of this method for automatic extraction of block walls and rapid assessment of collapse risk and are expected to contribute to safety measures in areas with high seismic risk.\n","PeriodicalId":505918,"journal":{"name":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":"27 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extraction of block walls from point clouds measured by Mobile Mapping System\",\"authors\":\"Taiga Odaka, Hiroki Harada, Kei Otomo, Kiichiro Ishikawa\",\"doi\":\"10.5194/isprs-archives-xlviii-2-2024-309-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. To solve the problem of collapsing block walls widely used in Japan, this study proposes a method for extracting block walls using 3D point cloud data measured by the Mobile Mapping System (MMS). Unlike conventional methods, this method identifies block walls based on geometric features without relying on MMS trajectory data or deep learning inference results. In addition, the computational load is low and manual correction can be minimized. In our experiments, we used point cloud data collected in urban areas in Japan and achieved a precision of 0.750, recall of 0.810, and F-measure of 0.779. The results demonstrate the effectiveness of this method for automatic extraction of block walls and rapid assessment of collapse risk and are expected to contribute to safety measures in areas with high seismic risk.\\n\",\"PeriodicalId\":505918,\"journal\":{\"name\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\"27 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xlviii-2-2024-309-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-2-2024-309-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要为解决日本广泛使用的砌块墙倒塌问题,本研究提出了一种利用移动测绘系统(MMS)测量的三维点云数据提取砌块墙的方法。与传统方法不同,该方法无需依赖移动测绘系统的轨迹数据或深度学习推理结果,而是根据几何特征识别砌块墙。此外,该方法的计算负荷低,可最大限度地减少人工校正。在实验中,我们使用了在日本城市地区收集的点云数据,精确度达到了 0.750,召回率为 0.810,F-measure 为 0.779。这些结果证明了该方法在自动提取砌块墙体和快速评估倒塌风险方面的有效性,并有望为地震高风险地区的安全措施做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extraction of block walls from point clouds measured by Mobile Mapping System
Abstract. To solve the problem of collapsing block walls widely used in Japan, this study proposes a method for extracting block walls using 3D point cloud data measured by the Mobile Mapping System (MMS). Unlike conventional methods, this method identifies block walls based on geometric features without relying on MMS trajectory data or deep learning inference results. In addition, the computational load is low and manual correction can be minimized. In our experiments, we used point cloud data collected in urban areas in Japan and achieved a precision of 0.750, recall of 0.810, and F-measure of 0.779. The results demonstrate the effectiveness of this method for automatic extraction of block walls and rapid assessment of collapse risk and are expected to contribute to safety measures in areas with high seismic risk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信