使用基于深度学习的生成对抗网络(GANs)进行图像处理和优化

Yang Zhang, Hangyu Xie, Shikai Zhuang, Xiaoan Zhan
{"title":"使用基于深度学习的生成对抗网络(GANs)进行图像处理和优化","authors":"Yang Zhang, Hangyu Xie, Shikai Zhuang, Xiaoan Zhan","doi":"10.60087/jaigs.v5i1.163","DOIUrl":null,"url":null,"abstract":"This paper introduces the application of generative adversarial networks (GANs) in image processing and optimization. GANs model can generate realistic images by co-training generator and discriminator, and achieve remarkable results in image restoration tasks. CATGAN and DCGAN are two commonly used GAN models applied to image classification and image restoration respectively. In addition, the global and local image patching methods can effectively fill the missing areas in the image and show good results in the restoration of large images. In conclusion, the image processing and optimization method based on GANs has shown great potential in practice and provides beneficial insight for future research and application in the field of image processing.","PeriodicalId":517201,"journal":{"name":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","volume":"7 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Processing and Optimization Using Deep Learning-Based Generative Adversarial Networks (GANs)\",\"authors\":\"Yang Zhang, Hangyu Xie, Shikai Zhuang, Xiaoan Zhan\",\"doi\":\"10.60087/jaigs.v5i1.163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the application of generative adversarial networks (GANs) in image processing and optimization. GANs model can generate realistic images by co-training generator and discriminator, and achieve remarkable results in image restoration tasks. CATGAN and DCGAN are two commonly used GAN models applied to image classification and image restoration respectively. In addition, the global and local image patching methods can effectively fill the missing areas in the image and show good results in the restoration of large images. In conclusion, the image processing and optimization method based on GANs has shown great potential in practice and provides beneficial insight for future research and application in the field of image processing.\",\"PeriodicalId\":517201,\"journal\":{\"name\":\"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023\",\"volume\":\"7 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.60087/jaigs.v5i1.163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60087/jaigs.v5i1.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了生成式对抗网络(GANs)在图像处理和优化中的应用。GANs 模型可以通过联合训练生成器和判别器生成逼真的图像,并在图像复原任务中取得显著效果。CATGAN 和 DCGAN 是两种常用的 GAN 模型,分别应用于图像分类和图像修复。此外,全局和局部图像修补方法能有效填补图像中的缺失区域,在大图像的修复中表现出良好的效果。总之,基于 GANs 的图像处理和优化方法在实践中展现出了巨大的潜力,为今后图像处理领域的研究和应用提供了有益的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Processing and Optimization Using Deep Learning-Based Generative Adversarial Networks (GANs)
This paper introduces the application of generative adversarial networks (GANs) in image processing and optimization. GANs model can generate realistic images by co-training generator and discriminator, and achieve remarkable results in image restoration tasks. CATGAN and DCGAN are two commonly used GAN models applied to image classification and image restoration respectively. In addition, the global and local image patching methods can effectively fill the missing areas in the image and show good results in the restoration of large images. In conclusion, the image processing and optimization method based on GANs has shown great potential in practice and provides beneficial insight for future research and application in the field of image processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信