Katharina Rox, Annett Kühne, Jennifer Herrmann, Rolf Jansen, Stephan Hüttel, Steffen Bernecker, Yohannes Hagos, Mark Brönstrup, Marc Stadler, Thomas Hesterkamp and Rolf Müller*,
{"title":"非典型四环素类药物 Chelocardin 和 Amidochelocardin 与肾脏药物转运体的相互作用","authors":"Katharina Rox, Annett Kühne, Jennifer Herrmann, Rolf Jansen, Stephan Hüttel, Steffen Bernecker, Yohannes Hagos, Mark Brönstrup, Marc Stadler, Thomas Hesterkamp and Rolf Müller*, ","doi":"10.1021/acsptsci.4c00183","DOIUrl":null,"url":null,"abstract":"<p >Antimicrobial resistance is expected to increase mortality rates by up to several million deaths per year by 2050 without new treatment options at hand. Recently, we characterized the pharmacokinetic (PK) and pharmacodynamic properties of two atypical tetracyclines, chelocardin (CHD) and amidochelocardin (CDCHD) that exhibit no cross-resistance with clinically used antibacterials. Both compounds were preferentially renally cleared and demonstrated pronounced effects in an ascending urinary tract infection model against <i>E. coli</i>. Renal drug transporters are known to influence clearance into the urine. In particular, inhibition of apical transporters in renal tubular epithelial cells can lead to intracellular accumulation and potential cell toxicity, whereas inhibition of basolateral transporters can cause a higher systemic exposure. Here, selected murine and human organic cation (Oct), organic anion (Oat), and efflux transporters were studied to elucidate interactions with CHD and CDCHD underlying their PK behavior. CHD exhibited stronger inhibitory effects on mOat1 and mOat3 and their human homologues hOAT1 and hOAT3 compared to CDCHD. While CHD was a substrate of mOat3 and mOct1, CDCHD was not. By contrast, no inhibitory effect was observed on Octs. CDCHD rather appeared to foster enhanced substrate transport on mOct1. CHD and CDCHD inhibited the efflux transporter hMRP2 on the apical side. In summary, the substrate nature of CHD in conjunction with its autoinhibition toward mOat3 rationalizes the distinct urine concentration profile compared to CDCHD that was previously observed in vivo. Further studies are needed to investigate the accumulation in renal tubular cells and the nephrotoxicity risk.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 7","pages":"2093–2109"},"PeriodicalIF":4.9000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsptsci.4c00183","citationCount":"0","resultStr":"{\"title\":\"Interaction of the Atypical Tetracyclines Chelocardin and Amidochelocardin with Renal Drug Transporters\",\"authors\":\"Katharina Rox, Annett Kühne, Jennifer Herrmann, Rolf Jansen, Stephan Hüttel, Steffen Bernecker, Yohannes Hagos, Mark Brönstrup, Marc Stadler, Thomas Hesterkamp and Rolf Müller*, \",\"doi\":\"10.1021/acsptsci.4c00183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Antimicrobial resistance is expected to increase mortality rates by up to several million deaths per year by 2050 without new treatment options at hand. Recently, we characterized the pharmacokinetic (PK) and pharmacodynamic properties of two atypical tetracyclines, chelocardin (CHD) and amidochelocardin (CDCHD) that exhibit no cross-resistance with clinically used antibacterials. Both compounds were preferentially renally cleared and demonstrated pronounced effects in an ascending urinary tract infection model against <i>E. coli</i>. Renal drug transporters are known to influence clearance into the urine. In particular, inhibition of apical transporters in renal tubular epithelial cells can lead to intracellular accumulation and potential cell toxicity, whereas inhibition of basolateral transporters can cause a higher systemic exposure. Here, selected murine and human organic cation (Oct), organic anion (Oat), and efflux transporters were studied to elucidate interactions with CHD and CDCHD underlying their PK behavior. CHD exhibited stronger inhibitory effects on mOat1 and mOat3 and their human homologues hOAT1 and hOAT3 compared to CDCHD. While CHD was a substrate of mOat3 and mOct1, CDCHD was not. By contrast, no inhibitory effect was observed on Octs. CDCHD rather appeared to foster enhanced substrate transport on mOct1. CHD and CDCHD inhibited the efflux transporter hMRP2 on the apical side. In summary, the substrate nature of CHD in conjunction with its autoinhibition toward mOat3 rationalizes the distinct urine concentration profile compared to CDCHD that was previously observed in vivo. Further studies are needed to investigate the accumulation in renal tubular cells and the nephrotoxicity risk.</p>\",\"PeriodicalId\":36426,\"journal\":{\"name\":\"ACS Pharmacology and Translational Science\",\"volume\":\"7 7\",\"pages\":\"2093–2109\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsptsci.4c00183\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsptsci.4c00183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Interaction of the Atypical Tetracyclines Chelocardin and Amidochelocardin with Renal Drug Transporters
Antimicrobial resistance is expected to increase mortality rates by up to several million deaths per year by 2050 without new treatment options at hand. Recently, we characterized the pharmacokinetic (PK) and pharmacodynamic properties of two atypical tetracyclines, chelocardin (CHD) and amidochelocardin (CDCHD) that exhibit no cross-resistance with clinically used antibacterials. Both compounds were preferentially renally cleared and demonstrated pronounced effects in an ascending urinary tract infection model against E. coli. Renal drug transporters are known to influence clearance into the urine. In particular, inhibition of apical transporters in renal tubular epithelial cells can lead to intracellular accumulation and potential cell toxicity, whereas inhibition of basolateral transporters can cause a higher systemic exposure. Here, selected murine and human organic cation (Oct), organic anion (Oat), and efflux transporters were studied to elucidate interactions with CHD and CDCHD underlying their PK behavior. CHD exhibited stronger inhibitory effects on mOat1 and mOat3 and their human homologues hOAT1 and hOAT3 compared to CDCHD. While CHD was a substrate of mOat3 and mOct1, CDCHD was not. By contrast, no inhibitory effect was observed on Octs. CDCHD rather appeared to foster enhanced substrate transport on mOct1. CHD and CDCHD inhibited the efflux transporter hMRP2 on the apical side. In summary, the substrate nature of CHD in conjunction with its autoinhibition toward mOat3 rationalizes the distinct urine concentration profile compared to CDCHD that was previously observed in vivo. Further studies are needed to investigate the accumulation in renal tubular cells and the nephrotoxicity risk.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.