ESTATE:用于三维点云分类的代表性不足的城市物体大型数据集

O. Bayrak, Zhenyu Ma, E. M. Farella, F. Remondino, M. Uzar
{"title":"ESTATE:用于三维点云分类的代表性不足的城市物体大型数据集","authors":"O. Bayrak, Zhenyu Ma, E. M. Farella, F. Remondino, M. Uzar","doi":"10.5194/isprs-archives-xlviii-2-2024-25-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Cityscapes contain a variety of objects, each with a particular role in urban administration and development. With the rapid growth and implementation of 3D imaging technology, urban areas are increasingly surveyed with high-resolution point clouds. This technical advancement extensively improves our ability to capture and analyse urban environments and their small objects. Deep learning algorithms for point cloud data have shown considerable capacity in 3D object classification but still face problems with generally under-represented objects (such as light poles or chimneys). This paper introduces the ESTATE dataset (https://github.com/3DOM-FBK/ESTATE), which combines available datasets of various sensors, densities, regions, and object types. It includes 13 classes featuring intensity and/or colour attributes. Tests using ESTATE demonstrate that the dataset improves the classification performance of deep learning techniques and could be a game-changer to advance in the 3D classification of urban objects.\n","PeriodicalId":505918,"journal":{"name":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":"14 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ESTATE: A Large Dataset of Under-Represented Urban Objects for 3D Point Cloud Classification\",\"authors\":\"O. Bayrak, Zhenyu Ma, E. M. Farella, F. Remondino, M. Uzar\",\"doi\":\"10.5194/isprs-archives-xlviii-2-2024-25-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Cityscapes contain a variety of objects, each with a particular role in urban administration and development. With the rapid growth and implementation of 3D imaging technology, urban areas are increasingly surveyed with high-resolution point clouds. This technical advancement extensively improves our ability to capture and analyse urban environments and their small objects. Deep learning algorithms for point cloud data have shown considerable capacity in 3D object classification but still face problems with generally under-represented objects (such as light poles or chimneys). This paper introduces the ESTATE dataset (https://github.com/3DOM-FBK/ESTATE), which combines available datasets of various sensors, densities, regions, and object types. It includes 13 classes featuring intensity and/or colour attributes. Tests using ESTATE demonstrate that the dataset improves the classification performance of deep learning techniques and could be a game-changer to advance in the 3D classification of urban objects.\\n\",\"PeriodicalId\":505918,\"journal\":{\"name\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\"14 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xlviii-2-2024-25-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-2-2024-25-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要城市景观包含各种各样的物体,每种物体在城市管理和发展中都扮演着特殊的角色。随着三维成像技术的快速发展和应用,越来越多的城市区域采用高分辨率点云进行勘测。这一技术进步极大地提高了我们捕捉和分析城市环境及其小物体的能力。针对点云数据的深度学习算法在三维物体分类方面已显示出相当大的能力,但在一般代表性不足的物体(如灯杆或烟囱)方面仍面临问题。本文介绍了ESTATE 数据集(https://github.com/3DOM-FBK/ESTATE),该数据集结合了各种传感器、密度、区域和物体类型的可用数据集。它包括 13 个具有强度和/或颜色属性的类别。使用ESTATE进行的测试表明,该数据集提高了深度学习技术的分类性能,可以改变游戏规则,推动城市物体的三维分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ESTATE: A Large Dataset of Under-Represented Urban Objects for 3D Point Cloud Classification
Abstract. Cityscapes contain a variety of objects, each with a particular role in urban administration and development. With the rapid growth and implementation of 3D imaging technology, urban areas are increasingly surveyed with high-resolution point clouds. This technical advancement extensively improves our ability to capture and analyse urban environments and their small objects. Deep learning algorithms for point cloud data have shown considerable capacity in 3D object classification but still face problems with generally under-represented objects (such as light poles or chimneys). This paper introduces the ESTATE dataset (https://github.com/3DOM-FBK/ESTATE), which combines available datasets of various sensors, densities, regions, and object types. It includes 13 classes featuring intensity and/or colour attributes. Tests using ESTATE demonstrate that the dataset improves the classification performance of deep learning techniques and could be a game-changer to advance in the 3D classification of urban objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信