M. Irshad, Muhammed Ahammed, R. Maya, Christophe Chesneau
{"title":"具有泊松传递记录类型指数创新的 INAR(1) 过程","authors":"M. Irshad, Muhammed Ahammed, R. Maya, Christophe Chesneau","doi":"10.3233/mas-231458","DOIUrl":null,"url":null,"abstract":"In their article, Erbayram and Akdoğan (Ricerche di Matematica, 2023) introduced the Poisson-transmuted record type exponential distribution by combining the Poisson and transmuted record type exponential distributions. This article presents a novel approach to modeling time series data using integer-valued time series with binomial thinning framework and the Poisson-transmuted record type exponential distribution as the innovation distribution. This model demonstrates remarkable proficiency in accurately representing over-dispersed integer-valued time series. Under this configuration, which is a flexible and highly dependable choice, the model accurately captures the underlying patterns present in the time series data. A comprehensive analysis of the statistical characteristics of the process is given. The conditional maximum likelihood and conditional least squares methods are employed to estimate the process parameters. The performance of the estimates is meticulously evaluated through extensive simulation studies. Finally, the proposed model is validated using real-time series data and compared against existing models to demonstrate its practical effectiveness.","PeriodicalId":35000,"journal":{"name":"Model Assisted Statistics and Applications","volume":"28 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INAR(1) process with Poisson-transmuted record type exponential innovations\",\"authors\":\"M. Irshad, Muhammed Ahammed, R. Maya, Christophe Chesneau\",\"doi\":\"10.3233/mas-231458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In their article, Erbayram and Akdoğan (Ricerche di Matematica, 2023) introduced the Poisson-transmuted record type exponential distribution by combining the Poisson and transmuted record type exponential distributions. This article presents a novel approach to modeling time series data using integer-valued time series with binomial thinning framework and the Poisson-transmuted record type exponential distribution as the innovation distribution. This model demonstrates remarkable proficiency in accurately representing over-dispersed integer-valued time series. Under this configuration, which is a flexible and highly dependable choice, the model accurately captures the underlying patterns present in the time series data. A comprehensive analysis of the statistical characteristics of the process is given. The conditional maximum likelihood and conditional least squares methods are employed to estimate the process parameters. The performance of the estimates is meticulously evaluated through extensive simulation studies. Finally, the proposed model is validated using real-time series data and compared against existing models to demonstrate its practical effectiveness.\",\"PeriodicalId\":35000,\"journal\":{\"name\":\"Model Assisted Statistics and Applications\",\"volume\":\"28 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Model Assisted Statistics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/mas-231458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Assisted Statistics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mas-231458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
Erbayram 和 Akdoğan (Ricerche di Matematica, 2023)在他们的文章中介绍了将泊松分布和嬗变记录型指数分布相结合的泊松嬗变记录型指数分布。本文提出了一种新颖的时间序列数据建模方法,使用二项稀疏框架的整数值时间序列和泊松变换记录型指数分布作为创新分布。该模型在准确表示过度分散的整数值时间序列方面表现出卓越的能力。在这种灵活且高度可靠的配置下,模型准确地捕捉到了时间序列数据中存在的基本模式。本文对这一过程的统计特征进行了全面分析。采用条件最大似然法和条件最小二乘法来估计过程参数。通过大量的模拟研究,对估计值的性能进行了细致的评估。最后,利用实时序列数据对所提出的模型进行了验证,并与现有模型进行了比较,以证明其实际有效性。
INAR(1) process with Poisson-transmuted record type exponential innovations
In their article, Erbayram and Akdoğan (Ricerche di Matematica, 2023) introduced the Poisson-transmuted record type exponential distribution by combining the Poisson and transmuted record type exponential distributions. This article presents a novel approach to modeling time series data using integer-valued time series with binomial thinning framework and the Poisson-transmuted record type exponential distribution as the innovation distribution. This model demonstrates remarkable proficiency in accurately representing over-dispersed integer-valued time series. Under this configuration, which is a flexible and highly dependable choice, the model accurately captures the underlying patterns present in the time series data. A comprehensive analysis of the statistical characteristics of the process is given. The conditional maximum likelihood and conditional least squares methods are employed to estimate the process parameters. The performance of the estimates is meticulously evaluated through extensive simulation studies. Finally, the proposed model is validated using real-time series data and compared against existing models to demonstrate its practical effectiveness.
期刊介绍:
Model Assisted Statistics and Applications is a peer reviewed international journal. Model Assisted Statistics means an improvement of inference and analysis by use of correlated information, or an underlying theoretical or design model. This might be the design, adjustment, estimation, or analytical phase of statistical project. This information may be survey generated or coming from an independent source. Original papers in the field of sampling theory, econometrics, time-series, design of experiments, and multivariate analysis will be preferred. Papers of both applied and theoretical topics are acceptable.