SCAPS-1D 模拟和过氧化物太阳能电池的优化

Andrei Drăgulinescu, Andreea-Georgiana Ulăreanu
{"title":"SCAPS-1D 模拟和过氧化物太阳能电池的优化","authors":"Andrei Drăgulinescu, Andreea-Georgiana Ulăreanu","doi":"10.1117/12.3021756","DOIUrl":null,"url":null,"abstract":"This paper has as a purpose the characterization, simulation (with SCAPS-1D software) and optimization of the performance characteristics of a perovskite solar cell (PSC). The performance of the cell was evaluated by interpreting the results based on the influence of characteristics such as the thickness of the layers, the temperature, the density of defects that may appear inside the absorbing material and at the interfaces, etc. Following the simulations, optimal parameters were determined, which led to a value of 23.49% for the power conversion efficiency (PCE), which is the highest compared to other MAPbI3-based PSCs simulated with SCAPS-1D that we found in recent literature. The performance of the proposed perovskite solar cell could be further improved by choosing other types of perovskites, and by variations of other characteristics and parameters of the layers.","PeriodicalId":198425,"journal":{"name":"Other Conferences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation in SCAPS-1D and optimization of a perovskite solar cell\",\"authors\":\"Andrei Drăgulinescu, Andreea-Georgiana Ulăreanu\",\"doi\":\"10.1117/12.3021756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper has as a purpose the characterization, simulation (with SCAPS-1D software) and optimization of the performance characteristics of a perovskite solar cell (PSC). The performance of the cell was evaluated by interpreting the results based on the influence of characteristics such as the thickness of the layers, the temperature, the density of defects that may appear inside the absorbing material and at the interfaces, etc. Following the simulations, optimal parameters were determined, which led to a value of 23.49% for the power conversion efficiency (PCE), which is the highest compared to other MAPbI3-based PSCs simulated with SCAPS-1D that we found in recent literature. The performance of the proposed perovskite solar cell could be further improved by choosing other types of perovskites, and by variations of other characteristics and parameters of the layers.\",\"PeriodicalId\":198425,\"journal\":{\"name\":\"Other Conferences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Other Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3021756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Other Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3021756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是表征、模拟(使用 SCAPS-1D 软件)和优化过氧化物太阳能电池(PSC)的性能特征。该电池的性能评估是根据层厚度、温度、吸收材料内部和界面上可能出现的缺陷密度等特性的影响来解释结果的。模拟之后,确定了最佳参数,从而使功率转换效率(PCE)达到 23.49%,与我们在近期文献中发现的使用 SCAPS-1D 模拟的其他基于 MAPbI3 的 PSC 相比,PCE 是最高的。通过选择其他类型的过氧化物以及改变各层的其他特性和参数,可以进一步提高所提出的过氧化物太阳能电池的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation in SCAPS-1D and optimization of a perovskite solar cell
This paper has as a purpose the characterization, simulation (with SCAPS-1D software) and optimization of the performance characteristics of a perovskite solar cell (PSC). The performance of the cell was evaluated by interpreting the results based on the influence of characteristics such as the thickness of the layers, the temperature, the density of defects that may appear inside the absorbing material and at the interfaces, etc. Following the simulations, optimal parameters were determined, which led to a value of 23.49% for the power conversion efficiency (PCE), which is the highest compared to other MAPbI3-based PSCs simulated with SCAPS-1D that we found in recent literature. The performance of the proposed perovskite solar cell could be further improved by choosing other types of perovskites, and by variations of other characteristics and parameters of the layers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信