{"title":"环硅氧烷聚合物薄膜的远程等离子体增强循环蚀刻技术","authors":"Xianglin Wang, Xinyu Luo, Weiwei Du, Yuanhao Shen, Xiaocheng Huang, Zheng Yang, Junjie Zhao","doi":"10.1088/2631-7990/ad57a1","DOIUrl":null,"url":null,"abstract":"\n The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants. With advantageous dielectric and mechanical properties, initiated chemical vapor deposited (iCVD) poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3) emerges as a promising candidate. However, previous works have not explored etching for this cyclosiloxane polymer thin film, which is indispensable for potential applications to the back-end-of-line fabrication. Here, we developed an etching process utilizing O2/Ar remote plasma for cyclic removal of iCVD pV3D3 thin film at sub-nanometer scale. We employed in-situ quartz crystal microbalance to investigate the process parameters including the plasma power, plasma duration, and O2 flow rate. X-ray photoelectron spectroscopy and cross-sectional microscopy reveal the formation of an oxidized skin layer during the etching process. This skin layer further substantiates an etching mechanism driven by surface oxidation and sputtering. Additionally, this oxidized skin layer leads to improved elastic modulus and hardness, and acts as a barrier layer for protecting the bottom cyclosiloxane polymer from further oxidation.","PeriodicalId":502508,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"21 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remote Plasma Enhanced Cyclic Etching of a Cyclosiloxane Polymer Thin Film\",\"authors\":\"Xianglin Wang, Xinyu Luo, Weiwei Du, Yuanhao Shen, Xiaocheng Huang, Zheng Yang, Junjie Zhao\",\"doi\":\"10.1088/2631-7990/ad57a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants. With advantageous dielectric and mechanical properties, initiated chemical vapor deposited (iCVD) poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3) emerges as a promising candidate. However, previous works have not explored etching for this cyclosiloxane polymer thin film, which is indispensable for potential applications to the back-end-of-line fabrication. Here, we developed an etching process utilizing O2/Ar remote plasma for cyclic removal of iCVD pV3D3 thin film at sub-nanometer scale. We employed in-situ quartz crystal microbalance to investigate the process parameters including the plasma power, plasma duration, and O2 flow rate. X-ray photoelectron spectroscopy and cross-sectional microscopy reveal the formation of an oxidized skin layer during the etching process. This skin layer further substantiates an etching mechanism driven by surface oxidation and sputtering. Additionally, this oxidized skin layer leads to improved elastic modulus and hardness, and acts as a barrier layer for protecting the bottom cyclosiloxane polymer from further oxidation.\",\"PeriodicalId\":502508,\"journal\":{\"name\":\"International Journal of Extreme Manufacturing\",\"volume\":\"21 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Extreme Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-7990/ad57a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad57a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Remote Plasma Enhanced Cyclic Etching of a Cyclosiloxane Polymer Thin Film
The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants. With advantageous dielectric and mechanical properties, initiated chemical vapor deposited (iCVD) poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3) emerges as a promising candidate. However, previous works have not explored etching for this cyclosiloxane polymer thin film, which is indispensable for potential applications to the back-end-of-line fabrication. Here, we developed an etching process utilizing O2/Ar remote plasma for cyclic removal of iCVD pV3D3 thin film at sub-nanometer scale. We employed in-situ quartz crystal microbalance to investigate the process parameters including the plasma power, plasma duration, and O2 flow rate. X-ray photoelectron spectroscopy and cross-sectional microscopy reveal the formation of an oxidized skin layer during the etching process. This skin layer further substantiates an etching mechanism driven by surface oxidation and sputtering. Additionally, this oxidized skin layer leads to improved elastic modulus and hardness, and acts as a barrier layer for protecting the bottom cyclosiloxane polymer from further oxidation.