环硅氧烷聚合物薄膜的远程等离子体增强循环蚀刻技术

Xianglin Wang, Xinyu Luo, Weiwei Du, Yuanhao Shen, Xiaocheng Huang, Zheng Yang, Junjie Zhao
{"title":"环硅氧烷聚合物薄膜的远程等离子体增强循环蚀刻技术","authors":"Xianglin Wang, Xinyu Luo, Weiwei Du, Yuanhao Shen, Xiaocheng Huang, Zheng Yang, Junjie Zhao","doi":"10.1088/2631-7990/ad57a1","DOIUrl":null,"url":null,"abstract":"\n The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants. With advantageous dielectric and mechanical properties, initiated chemical vapor deposited (iCVD) poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3) emerges as a promising candidate. However, previous works have not explored etching for this cyclosiloxane polymer thin film, which is indispensable for potential applications to the back-end-of-line fabrication. Here, we developed an etching process utilizing O2/Ar remote plasma for cyclic removal of iCVD pV3D3 thin film at sub-nanometer scale. We employed in-situ quartz crystal microbalance to investigate the process parameters including the plasma power, plasma duration, and O2 flow rate. X-ray photoelectron spectroscopy and cross-sectional microscopy reveal the formation of an oxidized skin layer during the etching process. This skin layer further substantiates an etching mechanism driven by surface oxidation and sputtering. Additionally, this oxidized skin layer leads to improved elastic modulus and hardness, and acts as a barrier layer for protecting the bottom cyclosiloxane polymer from further oxidation.","PeriodicalId":502508,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"21 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remote Plasma Enhanced Cyclic Etching of a Cyclosiloxane Polymer Thin Film\",\"authors\":\"Xianglin Wang, Xinyu Luo, Weiwei Du, Yuanhao Shen, Xiaocheng Huang, Zheng Yang, Junjie Zhao\",\"doi\":\"10.1088/2631-7990/ad57a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants. With advantageous dielectric and mechanical properties, initiated chemical vapor deposited (iCVD) poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3) emerges as a promising candidate. However, previous works have not explored etching for this cyclosiloxane polymer thin film, which is indispensable for potential applications to the back-end-of-line fabrication. Here, we developed an etching process utilizing O2/Ar remote plasma for cyclic removal of iCVD pV3D3 thin film at sub-nanometer scale. We employed in-situ quartz crystal microbalance to investigate the process parameters including the plasma power, plasma duration, and O2 flow rate. X-ray photoelectron spectroscopy and cross-sectional microscopy reveal the formation of an oxidized skin layer during the etching process. This skin layer further substantiates an etching mechanism driven by surface oxidation and sputtering. Additionally, this oxidized skin layer leads to improved elastic modulus and hardness, and acts as a barrier layer for protecting the bottom cyclosiloxane polymer from further oxidation.\",\"PeriodicalId\":502508,\"journal\":{\"name\":\"International Journal of Extreme Manufacturing\",\"volume\":\"21 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Extreme Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-7990/ad57a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad57a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

芯片制造技术的不断发展要求开发具有超低介电常数的材料。引发化学气相沉积(iCVD)聚(1,3,5-三甲基-1,3,5-三乙烯基环三硅氧烷)(pV3D3)具有良好的介电性能和机械性能,是一种很有前途的候选材料。然而,以前的研究还没有探索过这种环硅氧烷聚合物薄膜的蚀刻工艺,而蚀刻工艺对于后端制造的潜在应用是不可或缺的。在此,我们开发了一种蚀刻工艺,利用 O2/Ar 远程等离子体在亚纳米尺度上循环去除 iCVD pV3D3 薄膜。我们采用原位石英晶体微天平研究了包括等离子体功率、等离子体持续时间和氧气流速在内的工艺参数。X 射线光电子能谱和横截面显微镜揭示了蚀刻过程中氧化表皮层的形成。该表皮层进一步证实了由表面氧化和溅射驱动的蚀刻机制。此外,氧化表皮层还提高了弹性模量和硬度,并作为阻挡层保护底部环硅氧烷聚合物免受进一步氧化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remote Plasma Enhanced Cyclic Etching of a Cyclosiloxane Polymer Thin Film
The continuous evolution of chip manufacturing demands the development of materials with ultra-low dielectric constants. With advantageous dielectric and mechanical properties, initiated chemical vapor deposited (iCVD) poly(1,3,5-trimethyl-1,3,5-trivinyl cyclotrisiloxane) (pV3D3) emerges as a promising candidate. However, previous works have not explored etching for this cyclosiloxane polymer thin film, which is indispensable for potential applications to the back-end-of-line fabrication. Here, we developed an etching process utilizing O2/Ar remote plasma for cyclic removal of iCVD pV3D3 thin film at sub-nanometer scale. We employed in-situ quartz crystal microbalance to investigate the process parameters including the plasma power, plasma duration, and O2 flow rate. X-ray photoelectron spectroscopy and cross-sectional microscopy reveal the formation of an oxidized skin layer during the etching process. This skin layer further substantiates an etching mechanism driven by surface oxidation and sputtering. Additionally, this oxidized skin layer leads to improved elastic modulus and hardness, and acts as a barrier layer for protecting the bottom cyclosiloxane polymer from further oxidation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信