Heba Shaban, C. Kadelka, Stephanie Clark, Nicolas Delchier
{"title":"水热处理期间鹰嘴豆(Cicer arietinum L.)中维生素 B6 的扩散和化学降解:动力学方法","authors":"Heba Shaban, C. Kadelka, Stephanie Clark, Nicolas Delchier","doi":"10.3390/foods13121847","DOIUrl":null,"url":null,"abstract":"Chickpeas are more sustainable than other food systems and have high a nutritional value, especially regarding their vitamin composition. One of the main vitamins in chickpeas is vitamin B6, which is very important for several human metabolic functions. Since chickpeas are consumed after cooking, our goal was to better understand the role of leaching (diffusion) and thermal degradation of vitamin B6 in chickpeas during hydrothermal processing. Kinetics were conducted at four temperatures, ranging from 25 to 85 °C, carried out for 4 h in an excess of water for the diffusion kinetics, or in hermetic bags for the thermal degradation kinetics. Thermal degradation was modeled according to a first-order reaction, and diffusion was modeled according to a modified version of Fick’s second law. Diffusivity constants varied from 4.76 × 10−14 m2/s at 25 °C to 2.07 × 10−10 m2/s at 85 °C; the temperature had an impact on both the diffusivity constant and the residual vitamin B6. The kinetic constant ranged from 9.35 × 10−6 at 25 °C to 54.9 × 10−6 s−1 at 85 °C, with a lower impact of the temperature. In conclusion, vitamin B6 is relatively stable to heat degradation; loss is mainly due to diffusion, especially during shorter treatment times.","PeriodicalId":502667,"journal":{"name":"Foods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion and Chemical Degradation of Vitamin B6 in Chickpeas (Cicer arietinum L.) during Hydrothermal Treatments: A Kinetic Approach\",\"authors\":\"Heba Shaban, C. Kadelka, Stephanie Clark, Nicolas Delchier\",\"doi\":\"10.3390/foods13121847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chickpeas are more sustainable than other food systems and have high a nutritional value, especially regarding their vitamin composition. One of the main vitamins in chickpeas is vitamin B6, which is very important for several human metabolic functions. Since chickpeas are consumed after cooking, our goal was to better understand the role of leaching (diffusion) and thermal degradation of vitamin B6 in chickpeas during hydrothermal processing. Kinetics were conducted at four temperatures, ranging from 25 to 85 °C, carried out for 4 h in an excess of water for the diffusion kinetics, or in hermetic bags for the thermal degradation kinetics. Thermal degradation was modeled according to a first-order reaction, and diffusion was modeled according to a modified version of Fick’s second law. Diffusivity constants varied from 4.76 × 10−14 m2/s at 25 °C to 2.07 × 10−10 m2/s at 85 °C; the temperature had an impact on both the diffusivity constant and the residual vitamin B6. The kinetic constant ranged from 9.35 × 10−6 at 25 °C to 54.9 × 10−6 s−1 at 85 °C, with a lower impact of the temperature. In conclusion, vitamin B6 is relatively stable to heat degradation; loss is mainly due to diffusion, especially during shorter treatment times.\",\"PeriodicalId\":502667,\"journal\":{\"name\":\"Foods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/foods13121847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foods13121847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
鹰嘴豆比其他食物系统更具有可持续性,而且营养价值很高,尤其是其维生素成分。鹰嘴豆中的主要维生素之一是维生素 B6,它对人体的多种代谢功能非常重要。由于鹰嘴豆在烹饪后食用,我们的目标是更好地了解水热加工过程中鹰嘴豆中维生素 B6 的浸出(扩散)和热降解作用。我们在 25 至 85 °C 四种温度下进行了动力学研究,在过量水中进行了 4 小时的扩散动力学研究,或在密封袋中进行了热降解动力学研究。热降解根据一阶反应建模,扩散根据修正版的菲克第二定律建模。扩散常数从 25 °C 时的 4.76 × 10-14 m2/s 到 85 °C 时的 2.07 × 10-10 m2/s;温度对扩散常数和维生素 B6 的残留量都有影响。动力学常数从 25 °C 时的 9.35 × 10-6 到 85 °C 时的 54.9 × 10-6 s-1,温度的影响较小。总之,维生素 B6 对热降解相对稳定;损失主要是由于扩散,特别是在较短的处理时间内。
Diffusion and Chemical Degradation of Vitamin B6 in Chickpeas (Cicer arietinum L.) during Hydrothermal Treatments: A Kinetic Approach
Chickpeas are more sustainable than other food systems and have high a nutritional value, especially regarding their vitamin composition. One of the main vitamins in chickpeas is vitamin B6, which is very important for several human metabolic functions. Since chickpeas are consumed after cooking, our goal was to better understand the role of leaching (diffusion) and thermal degradation of vitamin B6 in chickpeas during hydrothermal processing. Kinetics were conducted at four temperatures, ranging from 25 to 85 °C, carried out for 4 h in an excess of water for the diffusion kinetics, or in hermetic bags for the thermal degradation kinetics. Thermal degradation was modeled according to a first-order reaction, and diffusion was modeled according to a modified version of Fick’s second law. Diffusivity constants varied from 4.76 × 10−14 m2/s at 25 °C to 2.07 × 10−10 m2/s at 85 °C; the temperature had an impact on both the diffusivity constant and the residual vitamin B6. The kinetic constant ranged from 9.35 × 10−6 at 25 °C to 54.9 × 10−6 s−1 at 85 °C, with a lower impact of the temperature. In conclusion, vitamin B6 is relatively stable to heat degradation; loss is mainly due to diffusion, especially during shorter treatment times.