用于城市基础设施设计、管理和弹性开发的物理信息机器学习(PIML):概念、最新技术、挑战与机遇

IF 9.7 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Alvin Wei Ze Chew, Renfei He, Limao Zhang
{"title":"用于城市基础设施设计、管理和弹性开发的物理信息机器学习(PIML):概念、最新技术、挑战与机遇","authors":"Alvin Wei Ze Chew,&nbsp;Renfei He,&nbsp;Limao Zhang","doi":"10.1007/s11831-024-10145-z","DOIUrl":null,"url":null,"abstract":"<div><p>Building resilient and sustainable urban infrastructures is imperative to prepare future generations against new pandemics and climate change uncertainties. In general, modelling of urban infrastructures requires modelers to carefully consider their initial design phase, subsequent life-span management, and long-term resilience development. With the continual development of machine learning (ML) and artificial intelligence (AI) approaches, significant opportunities are available to civil engineers to improve the existing computing systems of urban infrastructures to contribute to their overall design, management, and resilience-development. Often, an important requirement for the successful adoption of ML/AI techniques is to ensure sufficient field data for training effective predictive models for the above objectives. However, this requirement may be difficult to achieve for all infrastructure engineering applications in the practical field context due to sensor constraints (e.g., limited sensor deployment), coupled with other computational challenges. To address the multiple challenges, this review paper evaluates the important and relevant physics informed machine learning (PIML) publications from 1992 to 2022 for various critical infrastructure engineering applications, namely: (1) PIML for Infrastructures Design and Analysis, (2) PIML for Infrastructure Built-Environment Modelling, (3) PIML for Infrastructures Health Monitoring, and (4) PIML for Infrastructures Resilience Management/Development. In each application, we discuss on the key modelling objectives involved for the specific infrastructure systems, and their associated advantages and/or likely limitations obtained from the PIML implementation. Finally, we then summarize the key research trends and their associated challenges to continue leveraging on PIML techniques to better benefit the overall design, management, and resilience-development of urban infrastructures.</p></div>","PeriodicalId":55473,"journal":{"name":"Archives of Computational Methods in Engineering","volume":"32 1","pages":"399 - 439"},"PeriodicalIF":9.7000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics Informed Machine Learning (PIML) for Design, Management and Resilience-Development of Urban Infrastructures: A Review\",\"authors\":\"Alvin Wei Ze Chew,&nbsp;Renfei He,&nbsp;Limao Zhang\",\"doi\":\"10.1007/s11831-024-10145-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Building resilient and sustainable urban infrastructures is imperative to prepare future generations against new pandemics and climate change uncertainties. In general, modelling of urban infrastructures requires modelers to carefully consider their initial design phase, subsequent life-span management, and long-term resilience development. With the continual development of machine learning (ML) and artificial intelligence (AI) approaches, significant opportunities are available to civil engineers to improve the existing computing systems of urban infrastructures to contribute to their overall design, management, and resilience-development. Often, an important requirement for the successful adoption of ML/AI techniques is to ensure sufficient field data for training effective predictive models for the above objectives. However, this requirement may be difficult to achieve for all infrastructure engineering applications in the practical field context due to sensor constraints (e.g., limited sensor deployment), coupled with other computational challenges. To address the multiple challenges, this review paper evaluates the important and relevant physics informed machine learning (PIML) publications from 1992 to 2022 for various critical infrastructure engineering applications, namely: (1) PIML for Infrastructures Design and Analysis, (2) PIML for Infrastructure Built-Environment Modelling, (3) PIML for Infrastructures Health Monitoring, and (4) PIML for Infrastructures Resilience Management/Development. In each application, we discuss on the key modelling objectives involved for the specific infrastructure systems, and their associated advantages and/or likely limitations obtained from the PIML implementation. Finally, we then summarize the key research trends and their associated challenges to continue leveraging on PIML techniques to better benefit the overall design, management, and resilience-development of urban infrastructures.</p></div>\",\"PeriodicalId\":55473,\"journal\":{\"name\":\"Archives of Computational Methods in Engineering\",\"volume\":\"32 1\",\"pages\":\"399 - 439\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Computational Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11831-024-10145-z\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Computational Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11831-024-10145-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Physics Informed Machine Learning (PIML) for Design, Management and Resilience-Development of Urban Infrastructures: A Review

Physics Informed Machine Learning (PIML) for Design, Management and Resilience-Development of Urban Infrastructures: A Review

Building resilient and sustainable urban infrastructures is imperative to prepare future generations against new pandemics and climate change uncertainties. In general, modelling of urban infrastructures requires modelers to carefully consider their initial design phase, subsequent life-span management, and long-term resilience development. With the continual development of machine learning (ML) and artificial intelligence (AI) approaches, significant opportunities are available to civil engineers to improve the existing computing systems of urban infrastructures to contribute to their overall design, management, and resilience-development. Often, an important requirement for the successful adoption of ML/AI techniques is to ensure sufficient field data for training effective predictive models for the above objectives. However, this requirement may be difficult to achieve for all infrastructure engineering applications in the practical field context due to sensor constraints (e.g., limited sensor deployment), coupled with other computational challenges. To address the multiple challenges, this review paper evaluates the important and relevant physics informed machine learning (PIML) publications from 1992 to 2022 for various critical infrastructure engineering applications, namely: (1) PIML for Infrastructures Design and Analysis, (2) PIML for Infrastructure Built-Environment Modelling, (3) PIML for Infrastructures Health Monitoring, and (4) PIML for Infrastructures Resilience Management/Development. In each application, we discuss on the key modelling objectives involved for the specific infrastructure systems, and their associated advantages and/or likely limitations obtained from the PIML implementation. Finally, we then summarize the key research trends and their associated challenges to continue leveraging on PIML techniques to better benefit the overall design, management, and resilience-development of urban infrastructures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.80
自引率
4.10%
发文量
153
审稿时长
>12 weeks
期刊介绍: Archives of Computational Methods in Engineering Aim and Scope: Archives of Computational Methods in Engineering serves as an active forum for disseminating research and advanced practices in computational engineering, particularly focusing on mechanics and related fields. The journal emphasizes extended state-of-the-art reviews in selected areas, a unique feature of its publication. Review Format: Reviews published in the journal offer: A survey of current literature Critical exposition of topics in their full complexity By organizing the information in this manner, readers can quickly grasp the focus, coverage, and unique features of the Archives of Computational Methods in Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信