{"title":"生物有机大分子冠氧化锆纳米颗粒:富含蛋白质的鱼类粘液的合成及其抗菌功效评估","authors":"Ramasamy Subramanian, Govindasamy Chinnadurai, Raman Suresh, M. Santhamoorthy, Govindasami Periyasami, Perumal Karthikeyan, Anandhu Mohan, Thi Tuong Vy Phan","doi":"10.1515/zpch-2023-0505","DOIUrl":null,"url":null,"abstract":"Abstract The bioinorganic material, such as fish mucus macromolecules crowned zirconia nanoparticles (ZrO2 NPs) was synthesized via green methodology and has been investigated their efficacy on Gram-positive and Gram-negative bacterial strains that inhabit the oral cavity, gastrointestinal tracts, and colon. The environmentally benign synthesis methodology was used for fabricating biofunctionalized ZrO2 NPs with three different concentrations of C. striatus epidermal mucus. Spherical morphology with a size ranging from 7 to 25 nm of synthesized granular was identified by FESEM analysis. The powder XRD diffractions of synthesized ZrO2 NPs were confirmed with the previously reported standard literature. Upon being subjected to a primary microbial study, the synthesized ZrO2 NPs were shown to exhibit antibacterial activity against the tested bacterial pathogens. However, another Gram-negative bacterial stain, Proteus vulgaris shows almost similar efficiency to standard antibacterial drugs. Interestingly, all Gram-positive bacterial strains show a high zone of inhibition at higher concentrations of synthesized ZrO2 NPs. In general, the antibacterial activity study proved that the synthesized biofunctionalized ZrO2 NPs may be applied as an efficient health care beneficial material.","PeriodicalId":23847,"journal":{"name":"Zeitschrift für Physikalische Chemie","volume":"29 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioorganic macromolecules crowned zirconia nanoparticles: protein-rich fish mucus inspired synthesis and their antibacterial efficacy assessment\",\"authors\":\"Ramasamy Subramanian, Govindasamy Chinnadurai, Raman Suresh, M. Santhamoorthy, Govindasami Periyasami, Perumal Karthikeyan, Anandhu Mohan, Thi Tuong Vy Phan\",\"doi\":\"10.1515/zpch-2023-0505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The bioinorganic material, such as fish mucus macromolecules crowned zirconia nanoparticles (ZrO2 NPs) was synthesized via green methodology and has been investigated their efficacy on Gram-positive and Gram-negative bacterial strains that inhabit the oral cavity, gastrointestinal tracts, and colon. The environmentally benign synthesis methodology was used for fabricating biofunctionalized ZrO2 NPs with three different concentrations of C. striatus epidermal mucus. Spherical morphology with a size ranging from 7 to 25 nm of synthesized granular was identified by FESEM analysis. The powder XRD diffractions of synthesized ZrO2 NPs were confirmed with the previously reported standard literature. Upon being subjected to a primary microbial study, the synthesized ZrO2 NPs were shown to exhibit antibacterial activity against the tested bacterial pathogens. However, another Gram-negative bacterial stain, Proteus vulgaris shows almost similar efficiency to standard antibacterial drugs. Interestingly, all Gram-positive bacterial strains show a high zone of inhibition at higher concentrations of synthesized ZrO2 NPs. In general, the antibacterial activity study proved that the synthesized biofunctionalized ZrO2 NPs may be applied as an efficient health care beneficial material.\",\"PeriodicalId\":23847,\"journal\":{\"name\":\"Zeitschrift für Physikalische Chemie\",\"volume\":\"29 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für Physikalische Chemie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/zpch-2023-0505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Physikalische Chemie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zpch-2023-0505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bioorganic macromolecules crowned zirconia nanoparticles: protein-rich fish mucus inspired synthesis and their antibacterial efficacy assessment
Abstract The bioinorganic material, such as fish mucus macromolecules crowned zirconia nanoparticles (ZrO2 NPs) was synthesized via green methodology and has been investigated their efficacy on Gram-positive and Gram-negative bacterial strains that inhabit the oral cavity, gastrointestinal tracts, and colon. The environmentally benign synthesis methodology was used for fabricating biofunctionalized ZrO2 NPs with three different concentrations of C. striatus epidermal mucus. Spherical morphology with a size ranging from 7 to 25 nm of synthesized granular was identified by FESEM analysis. The powder XRD diffractions of synthesized ZrO2 NPs were confirmed with the previously reported standard literature. Upon being subjected to a primary microbial study, the synthesized ZrO2 NPs were shown to exhibit antibacterial activity against the tested bacterial pathogens. However, another Gram-negative bacterial stain, Proteus vulgaris shows almost similar efficiency to standard antibacterial drugs. Interestingly, all Gram-positive bacterial strains show a high zone of inhibition at higher concentrations of synthesized ZrO2 NPs. In general, the antibacterial activity study proved that the synthesized biofunctionalized ZrO2 NPs may be applied as an efficient health care beneficial material.