{"title":"利用变换广义雅可比多项式的一维本杰明-博纳-马霍尼-伯格斯方程谱法","authors":"Yu Zhou","doi":"10.3846/mma.2024.18595","DOIUrl":null,"url":null,"abstract":"The Benjamin-Bona-Mahony-Burgers equation (BBMBE) plays a fundemental role in many application scenarios. In this paper, we study a spectral method for the BBMBE with homogeneous boundary conditions. We propose a spectral scheme using the transformed generalized Jacobi polynomial in combination of the explicit fourth-order Runge-Kutta method in time. The boundedness, the generalized stability and the convergence of the proposed scheme are proved. The extensive numerical examples show the efficiency of the new proposed scheme and coincide well with the theoretical analysis. The advantages of our new approach are as follows: (i) the use of the transformed generalized Jacobi polynomial simplifies the theoretical analysis and brings a sparse discrete system; (ii) the numerical solution is spectral accuracy in space.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SPECTRAL METHOD FOR ONE DIMENSIONAL BENJAMIN-BONA-MAHONY-BURGERS EQUATION USING THE TRANSFORMED GENERALIZED JACOBI POLYNOMIAL\",\"authors\":\"Yu Zhou\",\"doi\":\"10.3846/mma.2024.18595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Benjamin-Bona-Mahony-Burgers equation (BBMBE) plays a fundemental role in many application scenarios. In this paper, we study a spectral method for the BBMBE with homogeneous boundary conditions. We propose a spectral scheme using the transformed generalized Jacobi polynomial in combination of the explicit fourth-order Runge-Kutta method in time. The boundedness, the generalized stability and the convergence of the proposed scheme are proved. The extensive numerical examples show the efficiency of the new proposed scheme and coincide well with the theoretical analysis. The advantages of our new approach are as follows: (i) the use of the transformed generalized Jacobi polynomial simplifies the theoretical analysis and brings a sparse discrete system; (ii) the numerical solution is spectral accuracy in space.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2024.18595\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2024.18595","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
SPECTRAL METHOD FOR ONE DIMENSIONAL BENJAMIN-BONA-MAHONY-BURGERS EQUATION USING THE TRANSFORMED GENERALIZED JACOBI POLYNOMIAL
The Benjamin-Bona-Mahony-Burgers equation (BBMBE) plays a fundemental role in many application scenarios. In this paper, we study a spectral method for the BBMBE with homogeneous boundary conditions. We propose a spectral scheme using the transformed generalized Jacobi polynomial in combination of the explicit fourth-order Runge-Kutta method in time. The boundedness, the generalized stability and the convergence of the proposed scheme are proved. The extensive numerical examples show the efficiency of the new proposed scheme and coincide well with the theoretical analysis. The advantages of our new approach are as follows: (i) the use of the transformed generalized Jacobi polynomial simplifies the theoretical analysis and brings a sparse discrete system; (ii) the numerical solution is spectral accuracy in space.