通过格罗伊布纳基础修改自动修正存在多重缺陷的算术电路

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Negar Aghapour Sabbagh, B. Alizadeh
{"title":"通过格罗伊布纳基础修改自动修正存在多重缺陷的算术电路","authors":"Negar Aghapour Sabbagh, B. Alizadeh","doi":"10.1145/3672559","DOIUrl":null,"url":null,"abstract":"One promising approach to verify large arithmetic circuits is making use of Symbolic Computer Algebra (SCA), where the circuit and the specification are translated to a set of polynomials, and the verification is performed by the ideal membership testing. Here, the main problem is the monomial explosion for buggy arithmetic circuits, which makes obtaining the word-level remainder become unfeasible. So, automatic correction of such circuits remains a significant challenge. Our proposed correction method partitions the circuit based on primary output bits and modifies the related Groebner basis based on the given suspicious gates, which makes it independent of the word-level remainder. We have applied our method to various signed and unsigned multipliers, with various sizes and numbers of suspicious and buggy gates. The results show that the proposed method corrects the bugs without area overhead. Moreover, it is able to correct the buggy circuit on average 51.9 × and 45.72 × faster in comparison with the state-of-the-art correction techniques, having single and multiple bugs, respectively.","PeriodicalId":50944,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Correction of Arithmetic Circuits in the Presence of Multiple Bugs by Groebner Basis Modification\",\"authors\":\"Negar Aghapour Sabbagh, B. Alizadeh\",\"doi\":\"10.1145/3672559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One promising approach to verify large arithmetic circuits is making use of Symbolic Computer Algebra (SCA), where the circuit and the specification are translated to a set of polynomials, and the verification is performed by the ideal membership testing. Here, the main problem is the monomial explosion for buggy arithmetic circuits, which makes obtaining the word-level remainder become unfeasible. So, automatic correction of such circuits remains a significant challenge. Our proposed correction method partitions the circuit based on primary output bits and modifies the related Groebner basis based on the given suspicious gates, which makes it independent of the word-level remainder. We have applied our method to various signed and unsigned multipliers, with various sizes and numbers of suspicious and buggy gates. The results show that the proposed method corrects the bugs without area overhead. Moreover, it is able to correct the buggy circuit on average 51.9 × and 45.72 × faster in comparison with the state-of-the-art correction techniques, having single and multiple bugs, respectively.\",\"PeriodicalId\":50944,\"journal\":{\"name\":\"ACM Transactions on Design Automation of Electronic Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Design Automation of Electronic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3672559\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3672559","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

利用符号计算机代数(SCA)验证大型算术电路是一种很有前途的方法,在这种方法中,电路和规范被转化为一组多项式,并通过理想成员测试进行验证。在这里,主要问题是错误算术电路的单项式爆炸,这使得获得字级余数变得不可行。因此,自动修正这类电路仍是一项重大挑战。我们提出的修正方法根据主要输出位分割电路,并根据给定的可疑门修改相关的格罗伯纳基础,从而使其与字级余数无关。我们将我们的方法应用于各种有符号和无符号乘法器,以及不同大小和数量的可疑门电路和错误门电路。结果表明,所提出的方法能在不增加面积的情况下修正错误。此外,与最先进的校正技术相比,该方法在校正单个和多个错误电路方面的平均速度分别提高了 51.9 倍和 45.72 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Correction of Arithmetic Circuits in the Presence of Multiple Bugs by Groebner Basis Modification
One promising approach to verify large arithmetic circuits is making use of Symbolic Computer Algebra (SCA), where the circuit and the specification are translated to a set of polynomials, and the verification is performed by the ideal membership testing. Here, the main problem is the monomial explosion for buggy arithmetic circuits, which makes obtaining the word-level remainder become unfeasible. So, automatic correction of such circuits remains a significant challenge. Our proposed correction method partitions the circuit based on primary output bits and modifies the related Groebner basis based on the given suspicious gates, which makes it independent of the word-level remainder. We have applied our method to various signed and unsigned multipliers, with various sizes and numbers of suspicious and buggy gates. The results show that the proposed method corrects the bugs without area overhead. Moreover, it is able to correct the buggy circuit on average 51.9 × and 45.72 × faster in comparison with the state-of-the-art correction techniques, having single and multiple bugs, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Design Automation of Electronic Systems
ACM Transactions on Design Automation of Electronic Systems 工程技术-计算机:软件工程
CiteScore
3.20
自引率
7.10%
发文量
105
审稿时长
3 months
期刊介绍: TODAES is a premier ACM journal in design and automation of electronic systems. It publishes innovative work documenting significant research and development advances on the specification, design, analysis, simulation, testing, and evaluation of electronic systems, emphasizing a computer science/engineering orientation. Both theoretical analysis and practical solutions are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信