Łukasz Radosz, D. Chmura, Artur Dyczko, Gabriela Woźniak
{"title":"煤矿开采后弃土堆新生态系统自生植被植物多样性的驱动因素及其与土壤呼吸作用的关系","authors":"Łukasz Radosz, D. Chmura, Artur Dyczko, Gabriela Woźniak","doi":"10.24425/jwld.2024.150270","DOIUrl":null,"url":null,"abstract":"The subject of the paper is the analysis of the relationship between spontaneous vegetation diversity and soil respiration in novel post-coal mine ecosystem. In the natural and semi-natural ecosystems, soil respiration process (Rs) is a crucial ecosystem function regulating terrestrial ecosystems’ carbon cycle. Soil respiration depends on the quality and quantity of the soil organic matter (SOM), the soil microbes’ activity, and root metabolism. The listed factors are directly related to the composition diversity of vegetation plant species (biochemistry). For many years, soil respiration parameters have been studied in natural and seminatural vegetation communities and ecosystems. However, there still need to be a greater understanding of the relationship between vegetation plant species diversity and soil respiration as a crucial ecosystem function. Plant species diversity has to be analysed through both the taxonomic diversity and the functional diversity. These approaches reflect the composition, structure, and function of plant species communities. We hypothesise that the diversity of the spontaneous vegetation species composition shapes the amount of soil respiration in a post-coal mine novel ecosystem. The soil respiration differs significantly along the vegetational types driven by habitat gradients and is significantly higher in highly functional richness and dispersion vegetation patches. Contrary to our expectation, soil respiration was the highest in the less diverse vegetation types – both taxonomical and functional evenness were non-significant factors. Only functional dispersion is weakly negative correlated with soil respiration level (SRL).","PeriodicalId":39224,"journal":{"name":"Journal of Water and Land Development","volume":"131 33","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factors driving plant diversity in the spontaneous vegetation of the novel ecosystem of post-coal mining spoil heaps and their relationship with soil respiration\",\"authors\":\"Łukasz Radosz, D. Chmura, Artur Dyczko, Gabriela Woźniak\",\"doi\":\"10.24425/jwld.2024.150270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The subject of the paper is the analysis of the relationship between spontaneous vegetation diversity and soil respiration in novel post-coal mine ecosystem. In the natural and semi-natural ecosystems, soil respiration process (Rs) is a crucial ecosystem function regulating terrestrial ecosystems’ carbon cycle. Soil respiration depends on the quality and quantity of the soil organic matter (SOM), the soil microbes’ activity, and root metabolism. The listed factors are directly related to the composition diversity of vegetation plant species (biochemistry). For many years, soil respiration parameters have been studied in natural and seminatural vegetation communities and ecosystems. However, there still need to be a greater understanding of the relationship between vegetation plant species diversity and soil respiration as a crucial ecosystem function. Plant species diversity has to be analysed through both the taxonomic diversity and the functional diversity. These approaches reflect the composition, structure, and function of plant species communities. We hypothesise that the diversity of the spontaneous vegetation species composition shapes the amount of soil respiration in a post-coal mine novel ecosystem. The soil respiration differs significantly along the vegetational types driven by habitat gradients and is significantly higher in highly functional richness and dispersion vegetation patches. Contrary to our expectation, soil respiration was the highest in the less diverse vegetation types – both taxonomical and functional evenness were non-significant factors. Only functional dispersion is weakly negative correlated with soil respiration level (SRL).\",\"PeriodicalId\":39224,\"journal\":{\"name\":\"Journal of Water and Land Development\",\"volume\":\"131 33\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Land Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/jwld.2024.150270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Land Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/jwld.2024.150270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
Factors driving plant diversity in the spontaneous vegetation of the novel ecosystem of post-coal mining spoil heaps and their relationship with soil respiration
The subject of the paper is the analysis of the relationship between spontaneous vegetation diversity and soil respiration in novel post-coal mine ecosystem. In the natural and semi-natural ecosystems, soil respiration process (Rs) is a crucial ecosystem function regulating terrestrial ecosystems’ carbon cycle. Soil respiration depends on the quality and quantity of the soil organic matter (SOM), the soil microbes’ activity, and root metabolism. The listed factors are directly related to the composition diversity of vegetation plant species (biochemistry). For many years, soil respiration parameters have been studied in natural and seminatural vegetation communities and ecosystems. However, there still need to be a greater understanding of the relationship between vegetation plant species diversity and soil respiration as a crucial ecosystem function. Plant species diversity has to be analysed through both the taxonomic diversity and the functional diversity. These approaches reflect the composition, structure, and function of plant species communities. We hypothesise that the diversity of the spontaneous vegetation species composition shapes the amount of soil respiration in a post-coal mine novel ecosystem. The soil respiration differs significantly along the vegetational types driven by habitat gradients and is significantly higher in highly functional richness and dispersion vegetation patches. Contrary to our expectation, soil respiration was the highest in the less diverse vegetation types – both taxonomical and functional evenness were non-significant factors. Only functional dispersion is weakly negative correlated with soil respiration level (SRL).
期刊介绍:
Journal of Water and Land Development - is a peer reviewed research journal published in English. Journal has been published continually since 1998. From 2013, the journal is published quarterly in the spring, summer, autumn, and winter. In 2011 and 2012 the journal was published twice a year, and between 1998 and 2010 it was published as a yearbook. . Papers may report the results of experiments, theoretical analyses, design of machines and mechanization systems, processes or processing methods, new materials, new measurements methods or new ideas in information technology. Topics: engineering and development of the agricultural environment, water managment in rural areas and protection of water resources, natural and economic functions of grassland.