论上三角哈密顿算子矩阵的交映自相接性和残余谱空性

IF 1.2 3区 数学 Q1 MATHEMATICS
Jie Liu, Guohai Jin, Buhe Eerdun
{"title":"论上三角哈密顿算子矩阵的交映自相接性和残余谱空性","authors":"Jie Liu,&nbsp;Guohai Jin,&nbsp;Buhe Eerdun","doi":"10.1007/s43034-024-00367-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with the symplectic self-adjointness and residual spectral emptiness of upper triangular Hamiltonian operator matrices <span>\\(H=\\left( {\\begin{matrix}A&amp;{}B\\\\ 0&amp;{}-A^*\\end{matrix}}\\right) \\)</span>. First, for symplectic self-adjoint Hamiltonian operator <i>H</i>, based on detailed classification of point spectrum <span>\\(\\sigma _p(H)\\)</span> and residual spectrum <span>\\(\\sigma _r(H)\\)</span>, the symmetry about imaginary axis is given between <span>\\(\\sigma _p(H)\\)</span>, <span>\\(\\sigma _r(H)\\)</span>, deficiency spectrum <span>\\(\\sigma _{\\delta }(H)\\)</span>, compression spectrum <span>\\(\\sigma _\\mathrm{{com}}(H)\\)</span> and approximate point spectrum <span>\\(\\sigma _\\mathrm{{app}}(H)\\)</span>. Second, by means of the spectral symmetry, the sufficient and necessary conditions are given for <span>\\(\\sigma _r(H)=\\varnothing \\)</span>, <span>\\(\\sigma _{r_1}(H)=\\varnothing \\)</span> and <span>\\(\\sigma _{r_2}(H)=\\varnothing \\)</span>, respectively. Then, for <span>\\(H=\\left( {\\begin{matrix}A&amp;{}B\\\\ 0&amp;{}-A^*\\end{matrix}}\\right) \\)</span>, it is proved that <i>H</i> is symplectic self-adjoint, if <i>H</i> is defined with diagonal domain <span>\\({\\mathcal {D}}(H)={\\mathcal {D}}(A)\\oplus {\\mathcal {D}}(A^*)\\)</span>. Finally, for <span>\\(H=\\left( {\\begin{matrix}A&amp;{}B\\\\ 0&amp;{}-A^*\\end{matrix}}\\right) \\)</span> defined with diagonal domain, using the space decomposition, the sufficient and necessary conditions for <span>\\(\\sigma _r(H)=\\varnothing \\)</span> and <span>\\(\\sigma _{r_1}(H)=\\varnothing \\)</span> are described in detail, respectively, by line operator, null space, and range of inner elements.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43034-024-00367-4.pdf","citationCount":"0","resultStr":"{\"title\":\"On the symplectic self-adjointness and residual spectral emptiness of upper triangular Hamiltonian operator matrices\",\"authors\":\"Jie Liu,&nbsp;Guohai Jin,&nbsp;Buhe Eerdun\",\"doi\":\"10.1007/s43034-024-00367-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper deals with the symplectic self-adjointness and residual spectral emptiness of upper triangular Hamiltonian operator matrices <span>\\\\(H=\\\\left( {\\\\begin{matrix}A&amp;{}B\\\\\\\\ 0&amp;{}-A^*\\\\end{matrix}}\\\\right) \\\\)</span>. First, for symplectic self-adjoint Hamiltonian operator <i>H</i>, based on detailed classification of point spectrum <span>\\\\(\\\\sigma _p(H)\\\\)</span> and residual spectrum <span>\\\\(\\\\sigma _r(H)\\\\)</span>, the symmetry about imaginary axis is given between <span>\\\\(\\\\sigma _p(H)\\\\)</span>, <span>\\\\(\\\\sigma _r(H)\\\\)</span>, deficiency spectrum <span>\\\\(\\\\sigma _{\\\\delta }(H)\\\\)</span>, compression spectrum <span>\\\\(\\\\sigma _\\\\mathrm{{com}}(H)\\\\)</span> and approximate point spectrum <span>\\\\(\\\\sigma _\\\\mathrm{{app}}(H)\\\\)</span>. Second, by means of the spectral symmetry, the sufficient and necessary conditions are given for <span>\\\\(\\\\sigma _r(H)=\\\\varnothing \\\\)</span>, <span>\\\\(\\\\sigma _{r_1}(H)=\\\\varnothing \\\\)</span> and <span>\\\\(\\\\sigma _{r_2}(H)=\\\\varnothing \\\\)</span>, respectively. Then, for <span>\\\\(H=\\\\left( {\\\\begin{matrix}A&amp;{}B\\\\\\\\ 0&amp;{}-A^*\\\\end{matrix}}\\\\right) \\\\)</span>, it is proved that <i>H</i> is symplectic self-adjoint, if <i>H</i> is defined with diagonal domain <span>\\\\({\\\\mathcal {D}}(H)={\\\\mathcal {D}}(A)\\\\oplus {\\\\mathcal {D}}(A^*)\\\\)</span>. Finally, for <span>\\\\(H=\\\\left( {\\\\begin{matrix}A&amp;{}B\\\\\\\\ 0&amp;{}-A^*\\\\end{matrix}}\\\\right) \\\\)</span> defined with diagonal domain, using the space decomposition, the sufficient and necessary conditions for <span>\\\\(\\\\sigma _r(H)=\\\\varnothing \\\\)</span> and <span>\\\\(\\\\sigma _{r_1}(H)=\\\\varnothing \\\\)</span> are described in detail, respectively, by line operator, null space, and range of inner elements.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43034-024-00367-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-024-00367-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00367-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了上三角哈密顿算子矩阵的交映自相接性和残余谱空性(H=left( {\begin{matrix}A&{}B\0&{}-A^*\end{matrix}}/right) )。首先,对于交映自关节哈密顿算子 H,基于对点谱(\sigma _p(H))和残差谱(\sigma _r(H))的详细分类,给出了 \(\sigma _p(H))之间关于虚轴的对称性、\(\sigma _r(H)\), 缺陷谱 \(\sigma _{\delta }(H)\), 压缩谱 \(\sigma _\mathrm{{com}}(H)\) 和近似点谱 \(\sigma _\mathrm{{app}}(H)\).其次,通过谱对称性,分别给出了\(\sigma _r(H)=\varnothing \)、\(\sigma _{r_1}(H)=\varnothing \)和\(\sigma _{r_2}(H)=\varnothing \)的充分条件和必要条件。然后,对于\(H=left( {\begin{matrix}A&{}B\0&{}-A^*\end{matrix}}/right) \),如果H的定义对角域为\({\mathcal {D}}(H)={\mathcal {D}}(A)\oplus {\mathcal {D}}(A^*)\) ,则证明H是交映自关节的。最后,对于(H=left( {\begin{matrix}A&{}B\0&;A^*\end{matrix}}\right) \)用对角域定义,利用空间分解,分别通过线算子、空域和内元范围详细描述了 \(\sigma _{r(H)=\varnothing \)和 \(\sigma _{r_1}(H)=\varnothing \)的充分条件和必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the symplectic self-adjointness and residual spectral emptiness of upper triangular Hamiltonian operator matrices

On the symplectic self-adjointness and residual spectral emptiness of upper triangular Hamiltonian operator matrices

This paper deals with the symplectic self-adjointness and residual spectral emptiness of upper triangular Hamiltonian operator matrices \(H=\left( {\begin{matrix}A&{}B\\ 0&{}-A^*\end{matrix}}\right) \). First, for symplectic self-adjoint Hamiltonian operator H, based on detailed classification of point spectrum \(\sigma _p(H)\) and residual spectrum \(\sigma _r(H)\), the symmetry about imaginary axis is given between \(\sigma _p(H)\), \(\sigma _r(H)\), deficiency spectrum \(\sigma _{\delta }(H)\), compression spectrum \(\sigma _\mathrm{{com}}(H)\) and approximate point spectrum \(\sigma _\mathrm{{app}}(H)\). Second, by means of the spectral symmetry, the sufficient and necessary conditions are given for \(\sigma _r(H)=\varnothing \), \(\sigma _{r_1}(H)=\varnothing \) and \(\sigma _{r_2}(H)=\varnothing \), respectively. Then, for \(H=\left( {\begin{matrix}A&{}B\\ 0&{}-A^*\end{matrix}}\right) \), it is proved that H is symplectic self-adjoint, if H is defined with diagonal domain \({\mathcal {D}}(H)={\mathcal {D}}(A)\oplus {\mathcal {D}}(A^*)\). Finally, for \(H=\left( {\begin{matrix}A&{}B\\ 0&{}-A^*\end{matrix}}\right) \) defined with diagonal domain, using the space decomposition, the sufficient and necessary conditions for \(\sigma _r(H)=\varnothing \) and \(\sigma _{r_1}(H)=\varnothing \) are described in detail, respectively, by line operator, null space, and range of inner elements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信