Ali Kashani, Shirin Panahi, Ankush Chakrabarty, Claus Danielson
{"title":"使用基于集合的梯度估计器进行稳健的数据驱动动态优化","authors":"Ali Kashani, Shirin Panahi, Ankush Chakrabarty, Claus Danielson","doi":"10.1002/oca.3157","DOIUrl":null,"url":null,"abstract":"This article presents an extremum‐seeking control (ESC) algorithm for unmodeled nonlinear systems with known steady‐state gain and generally non‐convex cost functions with bounded curvature. The main contribution of this article is a novel gradient estimator, which uses a polyhedral set that characterizes all gradient estimates consistent with the collected data. The gradient estimator is posed as a quadratic program, which selects the gradient estimate that provides the best worst‐case convergence of the closed‐loop Lyapunov function. We show that the polyhedral‐based gradient estimator ensures the stability of the closed‐loop system formed by the plant and optimization algorithm. Furthermore, the estimated gradient provably produces the optimal robust convergence. We demonstrate our ESC controller through three benchmark examples and one practical example, which shows our ESC has fast and robust convergence to the optimal equilibrium.","PeriodicalId":105945,"journal":{"name":"Optimal Control Applications and Methods","volume":"132 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust data‐driven dynamic optimization using a set‐based gradient estimator\",\"authors\":\"Ali Kashani, Shirin Panahi, Ankush Chakrabarty, Claus Danielson\",\"doi\":\"10.1002/oca.3157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an extremum‐seeking control (ESC) algorithm for unmodeled nonlinear systems with known steady‐state gain and generally non‐convex cost functions with bounded curvature. The main contribution of this article is a novel gradient estimator, which uses a polyhedral set that characterizes all gradient estimates consistent with the collected data. The gradient estimator is posed as a quadratic program, which selects the gradient estimate that provides the best worst‐case convergence of the closed‐loop Lyapunov function. We show that the polyhedral‐based gradient estimator ensures the stability of the closed‐loop system formed by the plant and optimization algorithm. Furthermore, the estimated gradient provably produces the optimal robust convergence. We demonstrate our ESC controller through three benchmark examples and one practical example, which shows our ESC has fast and robust convergence to the optimal equilibrium.\",\"PeriodicalId\":105945,\"journal\":{\"name\":\"Optimal Control Applications and Methods\",\"volume\":\"132 26\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimal Control Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/oca.3157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust data‐driven dynamic optimization using a set‐based gradient estimator
This article presents an extremum‐seeking control (ESC) algorithm for unmodeled nonlinear systems with known steady‐state gain and generally non‐convex cost functions with bounded curvature. The main contribution of this article is a novel gradient estimator, which uses a polyhedral set that characterizes all gradient estimates consistent with the collected data. The gradient estimator is posed as a quadratic program, which selects the gradient estimate that provides the best worst‐case convergence of the closed‐loop Lyapunov function. We show that the polyhedral‐based gradient estimator ensures the stability of the closed‐loop system formed by the plant and optimization algorithm. Furthermore, the estimated gradient provably produces the optimal robust convergence. We demonstrate our ESC controller through three benchmark examples and one practical example, which shows our ESC has fast and robust convergence to the optimal equilibrium.