使用基于集合的梯度估计器进行稳健的数据驱动动态优化

Ali Kashani, Shirin Panahi, Ankush Chakrabarty, Claus Danielson
{"title":"使用基于集合的梯度估计器进行稳健的数据驱动动态优化","authors":"Ali Kashani, Shirin Panahi, Ankush Chakrabarty, Claus Danielson","doi":"10.1002/oca.3157","DOIUrl":null,"url":null,"abstract":"This article presents an extremum‐seeking control (ESC) algorithm for unmodeled nonlinear systems with known steady‐state gain and generally non‐convex cost functions with bounded curvature. The main contribution of this article is a novel gradient estimator, which uses a polyhedral set that characterizes all gradient estimates consistent with the collected data. The gradient estimator is posed as a quadratic program, which selects the gradient estimate that provides the best worst‐case convergence of the closed‐loop Lyapunov function. We show that the polyhedral‐based gradient estimator ensures the stability of the closed‐loop system formed by the plant and optimization algorithm. Furthermore, the estimated gradient provably produces the optimal robust convergence. We demonstrate our ESC controller through three benchmark examples and one practical example, which shows our ESC has fast and robust convergence to the optimal equilibrium.","PeriodicalId":105945,"journal":{"name":"Optimal Control Applications and Methods","volume":"132 26","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust data‐driven dynamic optimization using a set‐based gradient estimator\",\"authors\":\"Ali Kashani, Shirin Panahi, Ankush Chakrabarty, Claus Danielson\",\"doi\":\"10.1002/oca.3157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an extremum‐seeking control (ESC) algorithm for unmodeled nonlinear systems with known steady‐state gain and generally non‐convex cost functions with bounded curvature. The main contribution of this article is a novel gradient estimator, which uses a polyhedral set that characterizes all gradient estimates consistent with the collected data. The gradient estimator is posed as a quadratic program, which selects the gradient estimate that provides the best worst‐case convergence of the closed‐loop Lyapunov function. We show that the polyhedral‐based gradient estimator ensures the stability of the closed‐loop system formed by the plant and optimization algorithm. Furthermore, the estimated gradient provably produces the optimal robust convergence. We demonstrate our ESC controller through three benchmark examples and one practical example, which shows our ESC has fast and robust convergence to the optimal equilibrium.\",\"PeriodicalId\":105945,\"journal\":{\"name\":\"Optimal Control Applications and Methods\",\"volume\":\"132 26\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimal Control Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/oca.3157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对具有已知稳态增益和具有有界曲率的一般非凸代价函数的未建模非线性系统,提出了一种极值寻优控制(ESC)算法。本文的主要贡献在于一个新颖的梯度估计器,它使用一个多面体集来描述所有与所收集数据一致的梯度估计。梯度估计器是一个二次方程程序,它选择能提供闭环 Lyapunov 函数最佳最坏收敛情况的梯度估计值。我们证明,基于多面体的梯度估计器能确保由工厂和优化算法组成的闭环系统的稳定性。此外,梯度估计可证明产生最佳鲁棒收敛。我们通过三个基准示例和一个实际示例演示了我们的 ESC 控制器,结果表明我们的 ESC 控制器能快速、稳健地收敛到最佳平衡点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust data‐driven dynamic optimization using a set‐based gradient estimator
This article presents an extremum‐seeking control (ESC) algorithm for unmodeled nonlinear systems with known steady‐state gain and generally non‐convex cost functions with bounded curvature. The main contribution of this article is a novel gradient estimator, which uses a polyhedral set that characterizes all gradient estimates consistent with the collected data. The gradient estimator is posed as a quadratic program, which selects the gradient estimate that provides the best worst‐case convergence of the closed‐loop Lyapunov function. We show that the polyhedral‐based gradient estimator ensures the stability of the closed‐loop system formed by the plant and optimization algorithm. Furthermore, the estimated gradient provably produces the optimal robust convergence. We demonstrate our ESC controller through three benchmark examples and one practical example, which shows our ESC has fast and robust convergence to the optimal equilibrium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信