Ahmed K. Hassan, Luay Q. Hashim, A. M. Rezooqi, M. F. Hashim
{"title":"生物合成铁/钯双金属纳米粒子并用于去除合成含油废水","authors":"Ahmed K. Hassan, Luay Q. Hashim, A. M. Rezooqi, M. F. Hashim","doi":"10.52716/jprs.v14i2.867","DOIUrl":null,"url":null,"abstract":"Eucalyptus plant leaves aqueous extract was used to produce a green bimetallic Fe/Pd nanoparticles (G-Fe/Pd NPs) catalyst for the degradation of synthetic oily effluent. Using Brunauer-Emmett-Teller (BET) analysis, Fourier-transform infrared spectroscopy (FTIR), particle size, and a zeta potential analyzer, the synthesized G Fe/Pd NPs were evaluated. G-Fe/Pd NPs have been found to contain nanoparticles, with a mean size of 182 nm and a surface area of 5.106 m2/g. The resulting nanoparticles were then used as a catalyst for a Fenton-like reaction. The amount of green catalyst G-Fe/Pd NPs (0.125-0.5 g/L), H2O2 concentration (15-37.5 mmol/L), pH (3-7), and temperature (25-45°C) all have a significant impact on the degradation efficiency of synthetic oily wastewater. Batch experiments showed that 88.9% degraded chemical oxygen demand (COD) from synthetic oily wastewater within the optimum conditions of peroxide concentration, catalyst dose, pH, and temperature which were 30.0 mmol/L, 0.375 g/L, 3, and 45℃ respectively along with 60 min contact time. The results of kinetic models showed that oily wastewater removal followed the Behnajady-Modirshahla-Ghanbary (BMG) model. Finally, the thermodynamic study of the reaction was also examined and concluded to endothermic reaction with an enthalpy of 37.39 kJ/mol.","PeriodicalId":16710,"journal":{"name":"Journal of Petroleum Research and Studies","volume":"139 35","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosynthesis of Fe/Pd Bimetallic Nanoparticles and Used for Removal of Synthetic Oily Wastewater\",\"authors\":\"Ahmed K. Hassan, Luay Q. Hashim, A. M. Rezooqi, M. F. Hashim\",\"doi\":\"10.52716/jprs.v14i2.867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eucalyptus plant leaves aqueous extract was used to produce a green bimetallic Fe/Pd nanoparticles (G-Fe/Pd NPs) catalyst for the degradation of synthetic oily effluent. Using Brunauer-Emmett-Teller (BET) analysis, Fourier-transform infrared spectroscopy (FTIR), particle size, and a zeta potential analyzer, the synthesized G Fe/Pd NPs were evaluated. G-Fe/Pd NPs have been found to contain nanoparticles, with a mean size of 182 nm and a surface area of 5.106 m2/g. The resulting nanoparticles were then used as a catalyst for a Fenton-like reaction. The amount of green catalyst G-Fe/Pd NPs (0.125-0.5 g/L), H2O2 concentration (15-37.5 mmol/L), pH (3-7), and temperature (25-45°C) all have a significant impact on the degradation efficiency of synthetic oily wastewater. Batch experiments showed that 88.9% degraded chemical oxygen demand (COD) from synthetic oily wastewater within the optimum conditions of peroxide concentration, catalyst dose, pH, and temperature which were 30.0 mmol/L, 0.375 g/L, 3, and 45℃ respectively along with 60 min contact time. The results of kinetic models showed that oily wastewater removal followed the Behnajady-Modirshahla-Ghanbary (BMG) model. Finally, the thermodynamic study of the reaction was also examined and concluded to endothermic reaction with an enthalpy of 37.39 kJ/mol.\",\"PeriodicalId\":16710,\"journal\":{\"name\":\"Journal of Petroleum Research and Studies\",\"volume\":\"139 35\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Research and Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52716/jprs.v14i2.867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Research and Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52716/jprs.v14i2.867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biosynthesis of Fe/Pd Bimetallic Nanoparticles and Used for Removal of Synthetic Oily Wastewater
Eucalyptus plant leaves aqueous extract was used to produce a green bimetallic Fe/Pd nanoparticles (G-Fe/Pd NPs) catalyst for the degradation of synthetic oily effluent. Using Brunauer-Emmett-Teller (BET) analysis, Fourier-transform infrared spectroscopy (FTIR), particle size, and a zeta potential analyzer, the synthesized G Fe/Pd NPs were evaluated. G-Fe/Pd NPs have been found to contain nanoparticles, with a mean size of 182 nm and a surface area of 5.106 m2/g. The resulting nanoparticles were then used as a catalyst for a Fenton-like reaction. The amount of green catalyst G-Fe/Pd NPs (0.125-0.5 g/L), H2O2 concentration (15-37.5 mmol/L), pH (3-7), and temperature (25-45°C) all have a significant impact on the degradation efficiency of synthetic oily wastewater. Batch experiments showed that 88.9% degraded chemical oxygen demand (COD) from synthetic oily wastewater within the optimum conditions of peroxide concentration, catalyst dose, pH, and temperature which were 30.0 mmol/L, 0.375 g/L, 3, and 45℃ respectively along with 60 min contact time. The results of kinetic models showed that oily wastewater removal followed the Behnajady-Modirshahla-Ghanbary (BMG) model. Finally, the thermodynamic study of the reaction was also examined and concluded to endothermic reaction with an enthalpy of 37.39 kJ/mol.