{"title":"基于频分多址 (FDMA) 和时分多址 (TDMA) 的射频识别 (RFID) 阅读器混合防冲突协议","authors":"Mourad Ouadou, Rachid Mafamane, K. Minaoui","doi":"10.3390/network4020011","DOIUrl":null,"url":null,"abstract":"Radio Frequency Identification (RFID) technology plays a crucial role in various Internet of Things (IoT) applications, necessitating the integration of RFID systems into dense networks. However, the presence of numerous readers leads to collisions, degrading communication between readers and tags and compromising system performance. To tackle this challenge, researchers have proposed Medium Access Control (MAC) layer protocols employing different channel access methods. In this paper, we present a novel solution, the Distributed Time Slot Anti-Collision protocol (DTS-AC), which employs a new TDMA notification system to address Reader-to-Reader Interference (RRI), while incorporating FDMA-based frequency resource management to resolve Reader-to-Tag Interference (RTI) collision issues. Simulation results demonstrate that DTS-AC significantly improves performance in dense RFID networks by enhancing read rates, with scalability benefits based on the number of readers, channels, and Time Slots (TSs). Moreover, the cost-effectiveness of DTS-AC facilitates efficient deployment in RFID networks, emphasizing considerations of time delay and data sensitivity.","PeriodicalId":19145,"journal":{"name":"Network","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Anti-Collision Protocol Based on Frequency Division Multiple Access (FDMA) and Time Division Multiple Access (TDMA) for Radio Frequency Identification (RFID) Readers\",\"authors\":\"Mourad Ouadou, Rachid Mafamane, K. Minaoui\",\"doi\":\"10.3390/network4020011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio Frequency Identification (RFID) technology plays a crucial role in various Internet of Things (IoT) applications, necessitating the integration of RFID systems into dense networks. However, the presence of numerous readers leads to collisions, degrading communication between readers and tags and compromising system performance. To tackle this challenge, researchers have proposed Medium Access Control (MAC) layer protocols employing different channel access methods. In this paper, we present a novel solution, the Distributed Time Slot Anti-Collision protocol (DTS-AC), which employs a new TDMA notification system to address Reader-to-Reader Interference (RRI), while incorporating FDMA-based frequency resource management to resolve Reader-to-Tag Interference (RTI) collision issues. Simulation results demonstrate that DTS-AC significantly improves performance in dense RFID networks by enhancing read rates, with scalability benefits based on the number of readers, channels, and Time Slots (TSs). Moreover, the cost-effectiveness of DTS-AC facilitates efficient deployment in RFID networks, emphasizing considerations of time delay and data sensitivity.\",\"PeriodicalId\":19145,\"journal\":{\"name\":\"Network\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/network4020011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/network4020011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
射频识别(RFID)技术在各种物联网(IoT)应用中发挥着至关重要的作用,因此有必要将 RFID 系统集成到密集的网络中。然而,大量读取器的存在会导致碰撞,降低读取器和标签之间的通信性能,影响系统性能。为应对这一挑战,研究人员提出了采用不同信道接入方法的介质访问控制(MAC)层协议。在本文中,我们提出了一种新颖的解决方案--分布式时隙防碰撞协议(DTS-AC),它采用新的 TDMA 通知系统来解决读者对读者干扰(RRI)问题,同时结合基于 FDMA 的频率资源管理来解决读者对标签干扰(RTI)碰撞问题。仿真结果表明,DTS-AC 通过提高读取率,显著改善了密集 RFID 网络的性能,并根据阅读器、信道和时隙(TS)的数量实现了可扩展性。此外,DTS-AC 的成本效益有助于在 RFID 网络中高效部署,同时强调了对时间延迟和数据敏感性的考虑。
A Hybrid Anti-Collision Protocol Based on Frequency Division Multiple Access (FDMA) and Time Division Multiple Access (TDMA) for Radio Frequency Identification (RFID) Readers
Radio Frequency Identification (RFID) technology plays a crucial role in various Internet of Things (IoT) applications, necessitating the integration of RFID systems into dense networks. However, the presence of numerous readers leads to collisions, degrading communication between readers and tags and compromising system performance. To tackle this challenge, researchers have proposed Medium Access Control (MAC) layer protocols employing different channel access methods. In this paper, we present a novel solution, the Distributed Time Slot Anti-Collision protocol (DTS-AC), which employs a new TDMA notification system to address Reader-to-Reader Interference (RRI), while incorporating FDMA-based frequency resource management to resolve Reader-to-Tag Interference (RTI) collision issues. Simulation results demonstrate that DTS-AC significantly improves performance in dense RFID networks by enhancing read rates, with scalability benefits based on the number of readers, channels, and Time Slots (TSs). Moreover, the cost-effectiveness of DTS-AC facilitates efficient deployment in RFID networks, emphasizing considerations of time delay and data sensitivity.