采用 5 纳米 FinFET 技术的基于 TG 的新型高性能 SRAM 单元

Sandipan Pal, Bijoy Kumar Upadhayay, Dr. Tanmoy Majumder, Narottam Kumar Das, Abhishek Bhattacharjee
{"title":"采用 5 纳米 FinFET 技术的基于 TG 的新型高性能 SRAM 单元","authors":"Sandipan Pal, Bijoy Kumar Upadhayay, Dr. Tanmoy Majumder, Narottam Kumar Das, Abhishek Bhattacharjee","doi":"10.1088/2631-8695/ad5812","DOIUrl":null,"url":null,"abstract":"\n In this study, we investigate the performance and reliability of a novel static random-access memory (SRAM) cell utilizing advanced 5 nm FinFET technology. Our research aims to address critical challenges in SRAM design by integrating transmission gates and power gated transistors. Through extensive simulations using the Cadence Virtuoso tool, we optimize the SRAM cell's read and write paths, resulting in substantial improvements in both functionalities. Additionally, our study unveils temperature-dependent variations in the read current and write margin, emphasizing the influence of temperature on SRAM performance. Compared to conventional FinFET SRAM circuits of equivalent bit-cell area and read latency, our innovative design showcases remarkable improvements across various parameters. Specifically, we achieve a commendable increase of 6.16% in the write static noise margin (WSNM) and 5.86% in the hold static noise margin (HSNM). Moreover, our findings reveal a substantial boost in read stability, increasing from 14.75% to 18.35%. These advancements underscore the promising potential of our approach in paving the way for future innovations in high-performance memory architectures. By leveraging state-of-the-art technology and meticulous optimization techniques, our research sets a new standard for SRAM design, offering enhanced performance, reliability, and efficiency in memory systems.","PeriodicalId":505725,"journal":{"name":"Engineering Research Express","volume":"69 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel high-performance TG-based SRAM cell with 5nm FinFET technology\",\"authors\":\"Sandipan Pal, Bijoy Kumar Upadhayay, Dr. Tanmoy Majumder, Narottam Kumar Das, Abhishek Bhattacharjee\",\"doi\":\"10.1088/2631-8695/ad5812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, we investigate the performance and reliability of a novel static random-access memory (SRAM) cell utilizing advanced 5 nm FinFET technology. Our research aims to address critical challenges in SRAM design by integrating transmission gates and power gated transistors. Through extensive simulations using the Cadence Virtuoso tool, we optimize the SRAM cell's read and write paths, resulting in substantial improvements in both functionalities. Additionally, our study unveils temperature-dependent variations in the read current and write margin, emphasizing the influence of temperature on SRAM performance. Compared to conventional FinFET SRAM circuits of equivalent bit-cell area and read latency, our innovative design showcases remarkable improvements across various parameters. Specifically, we achieve a commendable increase of 6.16% in the write static noise margin (WSNM) and 5.86% in the hold static noise margin (HSNM). Moreover, our findings reveal a substantial boost in read stability, increasing from 14.75% to 18.35%. These advancements underscore the promising potential of our approach in paving the way for future innovations in high-performance memory architectures. By leveraging state-of-the-art technology and meticulous optimization techniques, our research sets a new standard for SRAM design, offering enhanced performance, reliability, and efficiency in memory systems.\",\"PeriodicalId\":505725,\"journal\":{\"name\":\"Engineering Research Express\",\"volume\":\"69 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Research Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-8695/ad5812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Research Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-8695/ad5812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们利用先进的 5 纳米 FinFET 技术研究了新型静态随机存取存储器 (SRAM) 单元的性能和可靠性。我们的研究旨在通过集成传输栅极和功率门控晶体管来应对 SRAM 设计中的关键挑战。通过使用 Cadence Virtuoso 工具进行大量仿真,我们优化了 SRAM 单元的读写路径,从而大大改进了这两种功能。此外,我们的研究还揭示了读取电流和写入裕度随温度变化的情况,强调了温度对 SRAM 性能的影响。与位元面积和读取延迟相当的传统 FinFET SRAM 电路相比,我们的创新设计在各种参数上都有显著改进。具体而言,我们的写入静态噪声裕度(WSNM)和保持静态噪声裕度(HSNM)分别提高了 6.16% 和 5.86%,令人称道。此外,我们的研究结果表明,读取稳定性也得到了大幅提升,从 14.75% 提高到 18.35%。这些进步凸显了我们的方法在为高性能存储器架构的未来创新铺平道路方面的巨大潜力。通过利用最先进的技术和细致的优化技术,我们的研究为 SRAM 设计树立了新的标准,为存储器系统提供了更高的性能、可靠性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel high-performance TG-based SRAM cell with 5nm FinFET technology
In this study, we investigate the performance and reliability of a novel static random-access memory (SRAM) cell utilizing advanced 5 nm FinFET technology. Our research aims to address critical challenges in SRAM design by integrating transmission gates and power gated transistors. Through extensive simulations using the Cadence Virtuoso tool, we optimize the SRAM cell's read and write paths, resulting in substantial improvements in both functionalities. Additionally, our study unveils temperature-dependent variations in the read current and write margin, emphasizing the influence of temperature on SRAM performance. Compared to conventional FinFET SRAM circuits of equivalent bit-cell area and read latency, our innovative design showcases remarkable improvements across various parameters. Specifically, we achieve a commendable increase of 6.16% in the write static noise margin (WSNM) and 5.86% in the hold static noise margin (HSNM). Moreover, our findings reveal a substantial boost in read stability, increasing from 14.75% to 18.35%. These advancements underscore the promising potential of our approach in paving the way for future innovations in high-performance memory architectures. By leveraging state-of-the-art technology and meticulous optimization techniques, our research sets a new standard for SRAM design, offering enhanced performance, reliability, and efficiency in memory systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信