Cheng Zhang, Peng Han, Jisen Shi, Hao Zhou, Quanbin Zhang, Hong Cheng, Chuan Shen, Fen Zhang, Chao Han, Sui Wei
{"title":"基于单全支持优化随机相位和相位补偿的非迭代三维计算机生成全息图","authors":"Cheng Zhang, Peng Han, Jisen Shi, Hao Zhou, Quanbin Zhang, Hong Cheng, Chuan Shen, Fen Zhang, Chao Han, Sui Wei","doi":"10.1088/1367-2630/ad5810","DOIUrl":null,"url":null,"abstract":"\n The main problem faced by traditional 3D holographic displays is the time-consuming and poor flexibility of the hologram generation process. To address this issue, this paper proposes a non-iterative 3D computer-generated hologram (SFS-ORAP-PC-3D) method based on single full-support optimized random phase and phase compensation. Combining the full-support optimized random phase (FS-ORAP) method and the 3D layer-based idea to efficiently and non-iteratively generate the phase-only hologram of a 3D object with arbitrary positions and sizes using single FS-ORAP, thus overcoming the limitations of the original ORAP method in target position and size. Meanwhile, using a Fresnel lens for phase compensation allows for free selection of reconstruction planes. Numerical and optical experiments validate the feasibility of our proposed method.","PeriodicalId":508829,"journal":{"name":"New Journal of Physics","volume":"44 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Iterative 3D Computer-Generated Hologram Based on Single Full-Support Optimized Random Phase and Phase Compensation\",\"authors\":\"Cheng Zhang, Peng Han, Jisen Shi, Hao Zhou, Quanbin Zhang, Hong Cheng, Chuan Shen, Fen Zhang, Chao Han, Sui Wei\",\"doi\":\"10.1088/1367-2630/ad5810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The main problem faced by traditional 3D holographic displays is the time-consuming and poor flexibility of the hologram generation process. To address this issue, this paper proposes a non-iterative 3D computer-generated hologram (SFS-ORAP-PC-3D) method based on single full-support optimized random phase and phase compensation. Combining the full-support optimized random phase (FS-ORAP) method and the 3D layer-based idea to efficiently and non-iteratively generate the phase-only hologram of a 3D object with arbitrary positions and sizes using single FS-ORAP, thus overcoming the limitations of the original ORAP method in target position and size. Meanwhile, using a Fresnel lens for phase compensation allows for free selection of reconstruction planes. Numerical and optical experiments validate the feasibility of our proposed method.\",\"PeriodicalId\":508829,\"journal\":{\"name\":\"New Journal of Physics\",\"volume\":\"44 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1367-2630/ad5810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad5810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-Iterative 3D Computer-Generated Hologram Based on Single Full-Support Optimized Random Phase and Phase Compensation
The main problem faced by traditional 3D holographic displays is the time-consuming and poor flexibility of the hologram generation process. To address this issue, this paper proposes a non-iterative 3D computer-generated hologram (SFS-ORAP-PC-3D) method based on single full-support optimized random phase and phase compensation. Combining the full-support optimized random phase (FS-ORAP) method and the 3D layer-based idea to efficiently and non-iteratively generate the phase-only hologram of a 3D object with arbitrary positions and sizes using single FS-ORAP, thus overcoming the limitations of the original ORAP method in target position and size. Meanwhile, using a Fresnel lens for phase compensation allows for free selection of reconstruction planes. Numerical and optical experiments validate the feasibility of our proposed method.