Chetan Pawar, B. Shreeprakash, Beekanahalli Mokshanatha, Keval Chandrakant Nikam, Nitin Motgi, Laxmikant D. Jathar, Sagar D. Shelare, Shubham Sharma, Shashi Prakash Dwivedi, Pardeep Singh Bains, Abhinav Kumar, Mohamed Abbas
{"title":"基于机器学习的纳米颗粒对生物柴油发动机性能和排放影响的评估:重要综述","authors":"Chetan Pawar, B. Shreeprakash, Beekanahalli Mokshanatha, Keval Chandrakant Nikam, Nitin Motgi, Laxmikant D. Jathar, Sagar D. Shelare, Shubham Sharma, Shashi Prakash Dwivedi, Pardeep Singh Bains, Abhinav Kumar, Mohamed Abbas","doi":"10.1007/s11831-024-10144-0","DOIUrl":null,"url":null,"abstract":"<div><p>As researchers sought for new methods to decrease noxious emissions and improve engine performance, they discovered biodiesel as a promising biofuel. However, traditional study methodologies were deemed inadequate, prompting the need for computational methods to offer numerical solutions. This approach was seen as a creative and practical solution to the problem at hand. In response to the limitations of conventional modeling approaches, researchers turned towards the innovative solution of using machine-learning techniques as data processing systems. This creative approach has proven effective in addressing a broad variety of technical and scientific concerns, particularly in fields where traditional modeling approaches have fallen short of expectations. This review discusses using machine learning algorithms for predicting biodiesel performance and emissions with nanoparticles. Researchers have solved these problems with the application of machine learning to anticipate engine efficiency and emissions. The machine-learning algorithm predicts engine performance very precisely, proving its efficacy. Nanotechnology and biodiesel engine technologies are quickly advancing, making this review vital. Previous studies have examined nanoparticles' influence on engine performance and emissions. This review uniquely focuses on the application of machine learning techniques. Through the utilization of machine-learning algorithms, it is possible for gaining deeper understanding of intricate connections existing between the properties of nanoparticles and the behavior of engines. This methodology provides extensive comprehension of an impact of nanoparticles upon performance and emissions of biodiesel engines, hence enabling a development of more effectual and sustainable engine designs.</p></div>","PeriodicalId":55473,"journal":{"name":"Archives of Computational Methods in Engineering","volume":"32 1","pages":"499 - 533"},"PeriodicalIF":9.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Based Assessment of the Influence of Nanoparticles on Biodiesel Engine Performance and Emissions: A critical review\",\"authors\":\"Chetan Pawar, B. Shreeprakash, Beekanahalli Mokshanatha, Keval Chandrakant Nikam, Nitin Motgi, Laxmikant D. Jathar, Sagar D. Shelare, Shubham Sharma, Shashi Prakash Dwivedi, Pardeep Singh Bains, Abhinav Kumar, Mohamed Abbas\",\"doi\":\"10.1007/s11831-024-10144-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As researchers sought for new methods to decrease noxious emissions and improve engine performance, they discovered biodiesel as a promising biofuel. However, traditional study methodologies were deemed inadequate, prompting the need for computational methods to offer numerical solutions. This approach was seen as a creative and practical solution to the problem at hand. In response to the limitations of conventional modeling approaches, researchers turned towards the innovative solution of using machine-learning techniques as data processing systems. This creative approach has proven effective in addressing a broad variety of technical and scientific concerns, particularly in fields where traditional modeling approaches have fallen short of expectations. This review discusses using machine learning algorithms for predicting biodiesel performance and emissions with nanoparticles. Researchers have solved these problems with the application of machine learning to anticipate engine efficiency and emissions. The machine-learning algorithm predicts engine performance very precisely, proving its efficacy. Nanotechnology and biodiesel engine technologies are quickly advancing, making this review vital. Previous studies have examined nanoparticles' influence on engine performance and emissions. This review uniquely focuses on the application of machine learning techniques. Through the utilization of machine-learning algorithms, it is possible for gaining deeper understanding of intricate connections existing between the properties of nanoparticles and the behavior of engines. This methodology provides extensive comprehension of an impact of nanoparticles upon performance and emissions of biodiesel engines, hence enabling a development of more effectual and sustainable engine designs.</p></div>\",\"PeriodicalId\":55473,\"journal\":{\"name\":\"Archives of Computational Methods in Engineering\",\"volume\":\"32 1\",\"pages\":\"499 - 533\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Computational Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11831-024-10144-0\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Computational Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11831-024-10144-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Machine Learning-Based Assessment of the Influence of Nanoparticles on Biodiesel Engine Performance and Emissions: A critical review
As researchers sought for new methods to decrease noxious emissions and improve engine performance, they discovered biodiesel as a promising biofuel. However, traditional study methodologies were deemed inadequate, prompting the need for computational methods to offer numerical solutions. This approach was seen as a creative and practical solution to the problem at hand. In response to the limitations of conventional modeling approaches, researchers turned towards the innovative solution of using machine-learning techniques as data processing systems. This creative approach has proven effective in addressing a broad variety of technical and scientific concerns, particularly in fields where traditional modeling approaches have fallen short of expectations. This review discusses using machine learning algorithms for predicting biodiesel performance and emissions with nanoparticles. Researchers have solved these problems with the application of machine learning to anticipate engine efficiency and emissions. The machine-learning algorithm predicts engine performance very precisely, proving its efficacy. Nanotechnology and biodiesel engine technologies are quickly advancing, making this review vital. Previous studies have examined nanoparticles' influence on engine performance and emissions. This review uniquely focuses on the application of machine learning techniques. Through the utilization of machine-learning algorithms, it is possible for gaining deeper understanding of intricate connections existing between the properties of nanoparticles and the behavior of engines. This methodology provides extensive comprehension of an impact of nanoparticles upon performance and emissions of biodiesel engines, hence enabling a development of more effectual and sustainable engine designs.
期刊介绍:
Archives of Computational Methods in Engineering
Aim and Scope:
Archives of Computational Methods in Engineering serves as an active forum for disseminating research and advanced practices in computational engineering, particularly focusing on mechanics and related fields. The journal emphasizes extended state-of-the-art reviews in selected areas, a unique feature of its publication.
Review Format:
Reviews published in the journal offer:
A survey of current literature
Critical exposition of topics in their full complexity
By organizing the information in this manner, readers can quickly grasp the focus, coverage, and unique features of the Archives of Computational Methods in Engineering.