包含指数项的差分方程的动态行为和分岔分析

A. A. Elsadany, Samia Ibrahim, E. Elabbasy
{"title":"包含指数项的差分方程的动态行为和分岔分析","authors":"A. A. Elsadany, Samia Ibrahim, E. Elabbasy","doi":"10.28919/cpr-pajm/3-14","DOIUrl":null,"url":null,"abstract":"In this paper, the local stability, the boundedness, rate of convergence and the conditions of Neimark-Sacker bifurcation concerning difference equationxn+1=α1xn+α2xn-1+β1xnexp(-x2n-1)+β2xn-1exp(-x2n-1), n=0,1, ...,are investigated. We focus on the Neimark-Sacker bifurcations of the discrete model. The center manifold theorem and bifurcation theory are explicitly applied to reach conclusions about the occurrence and stability of the Neimark-Sacker bifurcation. Many numerical simulations that confirm the existence of the Neimark-Sacker bifurcation are also provided.","PeriodicalId":503253,"journal":{"name":"Pan-American Journal of Mathematics","volume":"66 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Behavior and Bifurcation Analysis of a Difference Equation Including Exponential Terms\",\"authors\":\"A. A. Elsadany, Samia Ibrahim, E. Elabbasy\",\"doi\":\"10.28919/cpr-pajm/3-14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the local stability, the boundedness, rate of convergence and the conditions of Neimark-Sacker bifurcation concerning difference equationxn+1=α1xn+α2xn-1+β1xnexp(-x2n-1)+β2xn-1exp(-x2n-1), n=0,1, ...,are investigated. We focus on the Neimark-Sacker bifurcations of the discrete model. The center manifold theorem and bifurcation theory are explicitly applied to reach conclusions about the occurrence and stability of the Neimark-Sacker bifurcation. Many numerical simulations that confirm the existence of the Neimark-Sacker bifurcation are also provided.\",\"PeriodicalId\":503253,\"journal\":{\"name\":\"Pan-American Journal of Mathematics\",\"volume\":\"66 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pan-American Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28919/cpr-pajm/3-14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pan-American Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/cpr-pajm/3-14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了差分方程xn+1=α1xn+α2xn-1+β1xnexp(-x2n-1)+β2xn-1exp(-x2n-1),n=0,1,...的局部稳定性、有界性、收敛速率和Neimark-Sacker分岔条件。我们重点研究了离散模型的 Neimark-Sacker 分岔。明确应用中心流形定理和分岔理论,得出 Neimark-Sacker 分岔的发生和稳定性结论。此外,还提供了许多证实 Neimark-Sacker 分岔存在的数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Behavior and Bifurcation Analysis of a Difference Equation Including Exponential Terms
In this paper, the local stability, the boundedness, rate of convergence and the conditions of Neimark-Sacker bifurcation concerning difference equationxn+1=α1xn+α2xn-1+β1xnexp(-x2n-1)+β2xn-1exp(-x2n-1), n=0,1, ...,are investigated. We focus on the Neimark-Sacker bifurcations of the discrete model. The center manifold theorem and bifurcation theory are explicitly applied to reach conclusions about the occurrence and stability of the Neimark-Sacker bifurcation. Many numerical simulations that confirm the existence of the Neimark-Sacker bifurcation are also provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信