Vivek Kumar, R. N. Rao, Ajendra Singh, V. Shekher, Kaushik Paul, P. Sinha, Thamer AH Alghamdi, A. Abdelaziz
{"title":"用于电力系统输电线路拥塞控制的新型自然启发胡桃钳优化算法","authors":"Vivek Kumar, R. N. Rao, Ajendra Singh, V. Shekher, Kaushik Paul, P. Sinha, Thamer AH Alghamdi, A. Abdelaziz","doi":"10.1177/01445987241253292","DOIUrl":null,"url":null,"abstract":"In the restructured power system, where uncertainties are common, managing congestion becomes a crucial aspect of power system operation and control. Congestion management aims to alleviate the power system transmission line congestion while meeting the system constraints at minimal cost. This research introduces a generation rescheduling method for congestion management in the electricity market, leveraging an innovative nutcracker optimizer algorithm. The nutcracker optimizer algorithm, inspired by nutcrackers’ food accumulation mechanisms, is a recently developed nature-inspired algorithm. The efficacy of this proposed approach is assessed across modified IEEE 30-bus, and IEEE 118-bus test systems, considering the system parameters. The effectiveness of the proposed congestion management with the nutcracker optimizer algorithm is analyzed by comparing its results with those generated by other recent optimization techniques. Results demonstrated that the nutcracker optimizer algorithm surpasses other comparative methods, requiring fewer fitness function evaluations, avoiding local optima, and displaying encouraging convergence traits. Implementing this approach can assist the system operators in swiftly addressing contingencies, ensuring secure and reliable power system operation within a deregulated environment.","PeriodicalId":507696,"journal":{"name":"Energy Exploration & Exploitation","volume":"56 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel nature-inspired nutcracker optimizer algorithm for congestion control in power system transmission lines\",\"authors\":\"Vivek Kumar, R. N. Rao, Ajendra Singh, V. Shekher, Kaushik Paul, P. Sinha, Thamer AH Alghamdi, A. Abdelaziz\",\"doi\":\"10.1177/01445987241253292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the restructured power system, where uncertainties are common, managing congestion becomes a crucial aspect of power system operation and control. Congestion management aims to alleviate the power system transmission line congestion while meeting the system constraints at minimal cost. This research introduces a generation rescheduling method for congestion management in the electricity market, leveraging an innovative nutcracker optimizer algorithm. The nutcracker optimizer algorithm, inspired by nutcrackers’ food accumulation mechanisms, is a recently developed nature-inspired algorithm. The efficacy of this proposed approach is assessed across modified IEEE 30-bus, and IEEE 118-bus test systems, considering the system parameters. The effectiveness of the proposed congestion management with the nutcracker optimizer algorithm is analyzed by comparing its results with those generated by other recent optimization techniques. Results demonstrated that the nutcracker optimizer algorithm surpasses other comparative methods, requiring fewer fitness function evaluations, avoiding local optima, and displaying encouraging convergence traits. Implementing this approach can assist the system operators in swiftly addressing contingencies, ensuring secure and reliable power system operation within a deregulated environment.\",\"PeriodicalId\":507696,\"journal\":{\"name\":\"Energy Exploration & Exploitation\",\"volume\":\"56 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Exploration & Exploitation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/01445987241253292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Exploration & Exploitation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01445987241253292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel nature-inspired nutcracker optimizer algorithm for congestion control in power system transmission lines
In the restructured power system, where uncertainties are common, managing congestion becomes a crucial aspect of power system operation and control. Congestion management aims to alleviate the power system transmission line congestion while meeting the system constraints at minimal cost. This research introduces a generation rescheduling method for congestion management in the electricity market, leveraging an innovative nutcracker optimizer algorithm. The nutcracker optimizer algorithm, inspired by nutcrackers’ food accumulation mechanisms, is a recently developed nature-inspired algorithm. The efficacy of this proposed approach is assessed across modified IEEE 30-bus, and IEEE 118-bus test systems, considering the system parameters. The effectiveness of the proposed congestion management with the nutcracker optimizer algorithm is analyzed by comparing its results with those generated by other recent optimization techniques. Results demonstrated that the nutcracker optimizer algorithm surpasses other comparative methods, requiring fewer fitness function evaluations, avoiding local optima, and displaying encouraging convergence traits. Implementing this approach can assist the system operators in swiftly addressing contingencies, ensuring secure and reliable power system operation within a deregulated environment.