Danko R. Jocić, Zora Lj. Golubović, Mihailo Krstić, Stevan Milašinović
{"title":"由Q和Q*理想中紧凑算子的增量$\\scriptstyle N$$算子元组生成的拉普拉斯变换器迭代扰动的规范不等式","authors":"Danko R. Jocić, Zora Lj. Golubović, Mihailo Krstić, Stevan Milašinović","doi":"10.1007/s43034-024-00364-7","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\Phi ,\\Psi \\)</span> be symmetrically norming (s.n.) functions, <img> and <span>\\({{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle A\\;\\!,B}X\\;\\!{\\mathop {=}\\limits ^{\\tiny {\\text {def}}}}\\;\\!{{{{\\mathscr {L}}}}}\\;\\X\\;\\!{\\mathop {=}\\limits ^{\\tiny {\\text {def}}}}\\;\\!\\int _{{{\\mathbb {R}}}_+}\\!e^{\\!-tA}Xe^{\\!-tB}\\;\\!d\\mu (t)\\)</span> denotes the Laplace transformer generated by the generalized derivation <img> where <span>\\(\\mu \\)</span> is a Borel probability measure on <img> If both pairs <img> consist of mutually commuting accretive operators, such that both <span>\\(C\\;\\!-A\\)</span> and <span>\\(D-B\\)</span> are accretive and <img> for some <img>, then <span>\\({{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle A^{\\;\\!*}\\!\\!,A}^{}\\;\\!(I)-{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle C^*\\!\\!,C}^{}\\;\\!(I)\\;\\!\\geqslant \\;\\!0,{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle B\\;\\!,B^*}^{}\\;\\!(I)-{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle D\\;\\!,D^*}^{}\\;\\!(I)\\;\\!\\geqslant \\;\\!0\\)</span> and </p><div><div><span>$$\\begin{aligned}&\\;\\!\\bigl \\vert {\\bigl \\vert {\\!\\sqrt{C^*\\!\\;\\!+\\!C\\!-A^*\\!\\;\\!-\\!A}\\bigl ({{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle A\\;\\!,B}X-{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle C\\;\\!,D}X}\\bigr )\\!\\sqrt{D\\!+\\!\\;\\!D^*\\!-\\!B-\\!B^*}\\;\\!}\\bigr \\vert }\\bigr \\vert _\\Psi \\\\&\\leqslant \\;\\!\\Bigl \\vert \\Bigl \\vert {\\textstyle \\sqrt{{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle A^{\\;\\!*}\\!\\!,A}^{}\\;\\!(I)-{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle C^*\\!\\!,C}^{}\\;\\!(I)}\\;\\!({AX\\!+\\!XB-CX\\!-\\!XD})}\\Bigr .\\Bigr .\\\\&\\times \\Bigl .\\Bigl .{\\!\\sqrt{{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle B\\;\\!,B^*}^{}\\;\\!(I)-{{{{\\mathscr {L}}}}}\\;\\![\\mu \\;\\!]\\Delta _{\\scriptscriptstyle D\\;\\!,D^*}^{}\\;\\!(I)}}\\Bigr \\vert \\Bigr \\vert _\\Psi , \\end{aligned}$$</span></div></div><p>holds under any of the following conditions: (a) if <img> (b) if <img> for some <span>\\(p\\geqslant 2,{ L^{\\;\\!2}\\;\\!(\\;\\!{{{\\mathbb {R}}}_+}\\;\\!,\\mu )}\\)</span> is separable and at least one of pairs (<i>A</i>, <i>C</i>) or (<i>B</i>, <i>D</i>) consists of normal operators, (c) if both pairs (<i>A</i>, <i>C</i>) and (<i>B</i>, <i>D</i>) consist of normal operators. Above, <span>\\({\\Phi ^{^(\\;\\!\\!^{p}\\;\\!\\!^)}}\\!\\)</span> denotes (the degree) <i>p</i>-modified s.n. function <span>\\(\\Phi \\)</span> and <span>\\({\\Phi ^{{^(\\;\\!\\!^{p}\\;\\!\\!^)}^{_*}}}\\!\\!\\)</span> is the dual s.n. function for <span>\\({\\Phi ^{^(\\;\\!\\!^{p}\\;\\!\\!^)}}\\!.\\)</span> Moreover, the aforementioned inequality is generalized to the iterated perturbations of Laplace transformers, and the alternative inequalities are given for Q norms as well. These inequalities also generalize some previously obtained results.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Norm inequalities for the iterated perturbations of Laplace transformers generated by accretive \\\\(\\\\scriptstyle N\\\\)-tuples of operators in Q and Q* ideals of compact operators\",\"authors\":\"Danko R. Jocić, Zora Lj. Golubović, Mihailo Krstić, Stevan Milašinović\",\"doi\":\"10.1007/s43034-024-00364-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\Phi ,\\\\Psi \\\\)</span> be symmetrically norming (s.n.) functions, <img> and <span>\\\\({{{{\\\\mathscr {L}}}}}\\\\;\\\\![\\\\mu \\\\;\\\\!]\\\\Delta _{\\\\scriptscriptstyle A\\\\;\\\\!,B}X\\\\;\\\\!{\\\\mathop {=}\\\\limits ^{\\\\tiny {\\\\text {def}}}}\\\\;\\\\!{{{{\\\\mathscr {L}}}}}\\\\;\\\\X\\\\;\\\\!{\\\\mathop {=}\\\\limits ^{\\\\tiny {\\\\text {def}}}}\\\\;\\\\!\\\\int _{{{\\\\mathbb {R}}}_+}\\\\!e^{\\\\!-tA}Xe^{\\\\!-tB}\\\\;\\\\!d\\\\mu (t)\\\\)</span> denotes the Laplace transformer generated by the generalized derivation <img> where <span>\\\\(\\\\mu \\\\)</span> is a Borel probability measure on <img> If both pairs <img> consist of mutually commuting accretive operators, such that both <span>\\\\(C\\\\;\\\\!-A\\\\)</span> and <span>\\\\(D-B\\\\)</span> are accretive and <img> for some <img>, then <span>\\\\({{{{\\\\mathscr {L}}}}}\\\\;\\\\![\\\\mu \\\\;\\\\!]\\\\Delta _{\\\\scriptscriptstyle A^{\\\\;\\\\!*}\\\\!\\\\!,A}^{}\\\\;\\\\!(I)-{{{{\\\\mathscr {L}}}}}\\\\;\\\\![\\\\mu \\\\;\\\\!]\\\\Delta _{\\\\scriptscriptstyle C^*\\\\!\\\\!,C}^{}\\\\;\\\\!(I)\\\\;\\\\!\\\\geqslant \\\\;\\\\!0,{{{{\\\\mathscr {L}}}}}\\\\;\\\\![\\\\mu \\\\;\\\\!]\\\\Delta _{\\\\scriptscriptstyle B\\\\;\\\\!,B^*}^{}\\\\;\\\\!(I)-{{{{\\\\mathscr {L}}}}}\\\\;\\\\![\\\\mu \\\\;\\\\!]\\\\Delta _{\\\\scriptscriptstyle D\\\\;\\\\!,D^*}^{}\\\\;\\\\!(I)\\\\;\\\\!\\\\geqslant \\\\;\\\\!0\\\\)</span> and </p><div><div><span>$$\\\\begin{aligned}&\\\\;\\\\!\\\\bigl \\\\vert {\\\\bigl \\\\vert {\\\\!\\\\sqrt{C^*\\\\!\\\\;\\\\!+\\\\!C\\\\!-A^*\\\\!\\\\;\\\\!-\\\\!A}\\\\bigl ({{{{{\\\\mathscr {L}}}}}\\\\;\\\\![\\\\mu \\\\;\\\\!]\\\\Delta _{\\\\scriptscriptstyle A\\\\;\\\\!,B}X-{{{{\\\\mathscr {L}}}}}\\\\;\\\\![\\\\mu \\\\;\\\\!]\\\\Delta _{\\\\scriptscriptstyle C\\\\;\\\\!,D}X}\\\\bigr )\\\\!\\\\sqrt{D\\\\!+\\\\!\\\\;\\\\!D^*\\\\!-\\\\!B-\\\\!B^*}\\\\;\\\\!}\\\\bigr \\\\vert }\\\\bigr \\\\vert _\\\\Psi \\\\\\\\&\\\\leqslant \\\\;\\\\!\\\\Bigl \\\\vert \\\\Bigl \\\\vert {\\\\textstyle \\\\sqrt{{{{{\\\\mathscr {L}}}}}\\\\;\\\\![\\\\mu \\\\;\\\\!]\\\\Delta _{\\\\scriptscriptstyle A^{\\\\;\\\\!*}\\\\!\\\\!,A}^{}\\\\;\\\\!(I)-{{{{\\\\mathscr {L}}}}}\\\\;\\\\![\\\\mu \\\\;\\\\!]\\\\Delta _{\\\\scriptscriptstyle C^*\\\\!\\\\!,C}^{}\\\\;\\\\!(I)}\\\\;\\\\!({AX\\\\!+\\\\!XB-CX\\\\!-\\\\!XD})}\\\\Bigr .\\\\Bigr .\\\\\\\\&\\\\times \\\\Bigl .\\\\Bigl .{\\\\!\\\\sqrt{{{{{\\\\mathscr {L}}}}}\\\\;\\\\![\\\\mu \\\\;\\\\!]\\\\Delta _{\\\\scriptscriptstyle B\\\\;\\\\!,B^*}^{}\\\\;\\\\!(I)-{{{{\\\\mathscr {L}}}}}\\\\;\\\\![\\\\mu \\\\;\\\\!]\\\\Delta _{\\\\scriptscriptstyle D\\\\;\\\\!,D^*}^{}\\\\;\\\\!(I)}}\\\\Bigr \\\\vert \\\\Bigr \\\\vert _\\\\Psi , \\\\end{aligned}$$</span></div></div><p>holds under any of the following conditions: (a) if <img> (b) if <img> for some <span>\\\\(p\\\\geqslant 2,{ L^{\\\\;\\\\!2}\\\\;\\\\!(\\\\;\\\\!{{{\\\\mathbb {R}}}_+}\\\\;\\\\!,\\\\mu )}\\\\)</span> is separable and at least one of pairs (<i>A</i>, <i>C</i>) or (<i>B</i>, <i>D</i>) consists of normal operators, (c) if both pairs (<i>A</i>, <i>C</i>) and (<i>B</i>, <i>D</i>) consist of normal operators. Above, <span>\\\\({\\\\Phi ^{^(\\\\;\\\\!\\\\!^{p}\\\\;\\\\!\\\\!^)}}\\\\!\\\\)</span> denotes (the degree) <i>p</i>-modified s.n. function <span>\\\\(\\\\Phi \\\\)</span> and <span>\\\\({\\\\Phi ^{{^(\\\\;\\\\!\\\\!^{p}\\\\;\\\\!\\\\!^)}^{_*}}}\\\\!\\\\!\\\\)</span> is the dual s.n. function for <span>\\\\({\\\\Phi ^{^(\\\\;\\\\!\\\\!^{p}\\\\;\\\\!\\\\!^)}}\\\\!.\\\\)</span> Moreover, the aforementioned inequality is generalized to the iterated perturbations of Laplace transformers, and the alternative inequalities are given for Q norms as well. These inequalities also generalize some previously obtained results.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-024-00364-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00364-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
讓 \(\Phi ,\Psi \)是對稱規範(s.n.)函數,並且 \({{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _\{scriptscriptstyle A\;\!,B}X\;\!{\mathop {=}\limits ^{\tiny {\text {def}}}}\;\!{{{{\mathscr {L}}}}}\;\X\!{\mathop {=}\limits ^{\tiny {\text {def}}}}\;\!\int_{{/{mathbb{R}}}_+}(e^{/{-tA}Xe^{/{-tB}}\;\!d\mu (t))表示由广义推导产生的拉普拉斯变换器,其中\(\mu\)是一个Borel概率度量,如果这两对都由相互换向的增量算子组成,那么\(C\;\.-A)和\(C\;\!-A)和(D-B)都是相加的,并且对于某个 ,那么({{{{mathscr {L}}}}}\;\![\mu \!]){\scriptscriptstyle A^\{;\!*}\!\!,A}^{}\;\!(I)-{{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle C^*\!\!,C}^{}\;\!(I)\;\!geqslant \;\!0,{{{{\mathscr {L}}}}}\;\![\mu\;\!]\Delta _{\scriptscriptstyle B\;\!,B^*}^{}\;\!(I)-{{{{\mathscr {L}}}}}\;\![\mu\;\!0)和 $$begin{aligned}&;\;bigl\vert {\bigl\vert {!\sqrt{C^*\;+\;C!-A^*\;\;-A}({{{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{scriptscriptstyle A\;\!,B}X-{{{{\mathscr {L}}}}}\;\![(\mu)\;(\!)]\Delta _{\scriptscriptstyle C\;\!,D}X}\bigr )\sqrt{D!+!\;\!D^*\!-!B-!B^*}\;\!}\bigr \vert }\bigr \vert _\Psi \&\leqslant\;\!|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||(I)-{{{{\mathscr {L}}}}}\;\![\mu\;\!]\Delta _{\scriptscriptstyle C^*\!\!,C}^{}\;\!(I)}\;\!({AX\!+\!XB-CX\!-\!XD})}\Bigr .\Bigr .\\(I)-{{{{mathscr {L}}}}}\;\![\mu\;\!]\Delta _{\scriptscriptstyle B\;\!,B^*}^{}\;\!(I)-{{{{mathscr {L}}}}}\;\![\mu\;\!]\Delta _{\scriptscriptscriptstyle D\;\!,D^*}^{}\;\!(I)}}\Bigr vert \Bigr vert _\Psi , \end{aligned}$$holds under any of the following conditions: (a) if (b) if for some \(p\geqslant 2,{ L^{\;\!2}\;\!(\;\!{{\mathbb {R}}_+}}\;\!(A,C)或(B,D)中至少有一个由正则算子组成,(c)如果(A,C)和(B,D)都由正则算子组成。以上,\({\Phi ^{^(\;\!!!^{p}\;\!!^)}}\({\Phi ^{^(\;\;\!\是({\Phi ^{^(\;\!!!^{p}\!!!^)}^{_*}}的对偶s.n.函数。此外,上述不等式还被推广到拉普拉斯变换器的迭代扰动,并给出了 Q 准则的替代不等式。这些不等式还概括了之前得到的一些结果。
Norm inequalities for the iterated perturbations of Laplace transformers generated by accretive \(\scriptstyle N\)-tuples of operators in Q and Q* ideals of compact operators
Let \(\Phi ,\Psi \) be symmetrically norming (s.n.) functions, and \({{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle A\;\!,B}X\;\!{\mathop {=}\limits ^{\tiny {\text {def}}}}\;\!{{{{\mathscr {L}}}}}\;\X\;\!{\mathop {=}\limits ^{\tiny {\text {def}}}}\;\!\int _{{{\mathbb {R}}}_+}\!e^{\!-tA}Xe^{\!-tB}\;\!d\mu (t)\) denotes the Laplace transformer generated by the generalized derivation where \(\mu \) is a Borel probability measure on If both pairs consist of mutually commuting accretive operators, such that both \(C\;\!-A\) and \(D-B\) are accretive and for some , then \({{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle A^{\;\!*}\!\!,A}^{}\;\!(I)-{{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle C^*\!\!,C}^{}\;\!(I)\;\!\geqslant \;\!0,{{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle B\;\!,B^*}^{}\;\!(I)-{{{{\mathscr {L}}}}}\;\![\mu \;\!]\Delta _{\scriptscriptstyle D\;\!,D^*}^{}\;\!(I)\;\!\geqslant \;\!0\) and
holds under any of the following conditions: (a) if (b) if for some \(p\geqslant 2,{ L^{\;\!2}\;\!(\;\!{{{\mathbb {R}}}_+}\;\!,\mu )}\) is separable and at least one of pairs (A, C) or (B, D) consists of normal operators, (c) if both pairs (A, C) and (B, D) consist of normal operators. Above, \({\Phi ^{^(\;\!\!^{p}\;\!\!^)}}\!\) denotes (the degree) p-modified s.n. function \(\Phi \) and \({\Phi ^{{^(\;\!\!^{p}\;\!\!^)}^{_*}}}\!\!\) is the dual s.n. function for \({\Phi ^{^(\;\!\!^{p}\;\!\!^)}}\!.\) Moreover, the aforementioned inequality is generalized to the iterated perturbations of Laplace transformers, and the alternative inequalities are given for Q norms as well. These inequalities also generalize some previously obtained results.
期刊介绍:
Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group.
Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory.
Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.