Jason Sharples, P. Jyoteeshkumar Reddy, Víctor Resco de Dios, R. Nolan, Matthias M. Boer, Ross A. Bradstock
{"title":"死燃料含水率简单经验模型的评估和比较","authors":"Jason Sharples, P. Jyoteeshkumar Reddy, Víctor Resco de Dios, R. Nolan, Matthias M. Boer, Ross A. Bradstock","doi":"10.1071/wf23120","DOIUrl":null,"url":null,"abstract":"Background The moisture content of litter and woody debris is a key determinant of fire potential and fire behaviour. Obtaining reliable estimates of the moisture content of dead fine fuels (i.e. 1-h and 10-h fuels) is therefore a critical requirement for effective fire management. Aims We evaluated and compared the performance of five simple models for fuel moisture content. The models belong to two separate classes: (1) exponential functions of the vapour pressure deficit; and (2) affine functions of the (weighted) difference between air temperature and relative humidity. Methods Model performance is assessed using error and correlation statistics, calculated using cross validation, over four empirical datasets. Key results Overall, the best performing models were the relaxed and generalised models based on the weighted difference between temperature and relative humidity. Conclusions Simple functions of the difference between air temperature and relative humidity can perform as well as, if not better than exponential functions of vapour pressure deficit. However, it is important to note the limitations of all these models when applied to fuels with moisture contents <10%. Implications The moisture content of fine dead fuels and woody debris can be reliably estimated using simple models that are amenable to easy application.","PeriodicalId":14464,"journal":{"name":"International Journal of Wildland Fire","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation and comparison of simple empirical models for dead fuel moisture content\",\"authors\":\"Jason Sharples, P. Jyoteeshkumar Reddy, Víctor Resco de Dios, R. Nolan, Matthias M. Boer, Ross A. Bradstock\",\"doi\":\"10.1071/wf23120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background The moisture content of litter and woody debris is a key determinant of fire potential and fire behaviour. Obtaining reliable estimates of the moisture content of dead fine fuels (i.e. 1-h and 10-h fuels) is therefore a critical requirement for effective fire management. Aims We evaluated and compared the performance of five simple models for fuel moisture content. The models belong to two separate classes: (1) exponential functions of the vapour pressure deficit; and (2) affine functions of the (weighted) difference between air temperature and relative humidity. Methods Model performance is assessed using error and correlation statistics, calculated using cross validation, over four empirical datasets. Key results Overall, the best performing models were the relaxed and generalised models based on the weighted difference between temperature and relative humidity. Conclusions Simple functions of the difference between air temperature and relative humidity can perform as well as, if not better than exponential functions of vapour pressure deficit. However, it is important to note the limitations of all these models when applied to fuels with moisture contents <10%. Implications The moisture content of fine dead fuels and woody debris can be reliably estimated using simple models that are amenable to easy application.\",\"PeriodicalId\":14464,\"journal\":{\"name\":\"International Journal of Wildland Fire\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Wildland Fire\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1071/wf23120\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Wildland Fire","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1071/wf23120","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Evaluation and comparison of simple empirical models for dead fuel moisture content
Background The moisture content of litter and woody debris is a key determinant of fire potential and fire behaviour. Obtaining reliable estimates of the moisture content of dead fine fuels (i.e. 1-h and 10-h fuels) is therefore a critical requirement for effective fire management. Aims We evaluated and compared the performance of five simple models for fuel moisture content. The models belong to two separate classes: (1) exponential functions of the vapour pressure deficit; and (2) affine functions of the (weighted) difference between air temperature and relative humidity. Methods Model performance is assessed using error and correlation statistics, calculated using cross validation, over four empirical datasets. Key results Overall, the best performing models were the relaxed and generalised models based on the weighted difference between temperature and relative humidity. Conclusions Simple functions of the difference between air temperature and relative humidity can perform as well as, if not better than exponential functions of vapour pressure deficit. However, it is important to note the limitations of all these models when applied to fuels with moisture contents <10%. Implications The moisture content of fine dead fuels and woody debris can be reliably estimated using simple models that are amenable to easy application.
期刊介绍:
International Journal of Wildland Fire publishes new and significant articles that advance basic and applied research concerning wildland fire. Published papers aim to assist in the understanding of the basic principles of fire as a process, its ecological impact at the stand level and the landscape level, modelling fire and its effects, as well as presenting information on how to effectively and efficiently manage fire. The journal has an international perspective, since wildland fire plays a major social, economic and ecological role around the globe.
The International Journal of Wildland Fire is published on behalf of the International Association of Wildland Fire.