{"title":"基于火灾图像和深度学习预测未来瞬态火灾热释放率","authors":"Lei Xu, Jinyuan Dong, Delei Zou","doi":"10.3390/fire7060200","DOIUrl":null,"url":null,"abstract":"The fire heat release rate (HRR) is a crucial parameter for describing the combustion process and its thermal effects. In recent years, some studies have employed fire scene images and deep learning algorithms to predict real-time fire HRR, which has led to the advancement of HRR prediction in terms of both lightweightness and real-time monitoring. Nevertheless, the development of an early-stage monitoring system for fires and the ability to predict future HRR based on current moment data represents a crucial foundation for evaluating the scale of indoor fires and enhancing the capacity to prevent and control such incidents. This paper proposes a deep learning model based on continuous fire scene images (containing both flame and smoke features) and their time-series information to predict the future transient fire HRR. The model (Att-BiLSTM) comprises three bi-directional long- and short-term memory (Bi-LSTM) layers and one attention layer. The model employs a bidirectional feature extraction approach, followed by the introduction of an attention mechanism to highlight the image features that have a critical impact on the prediction results. In this paper, a large-scale dataset is constructed by collecting 27,231 fire scene images with instantaneous HRR annotations from 40 different fire trials from the NIST database. The experimental results demonstrate that Att-BiLSTM is capable of effectively utilizing fire scene image features and temporal information to accurately predict future transient HRR, including those in high-brightness fire environments and complex fire source situations. The research presented in this paper offers novel insights and methodologies for fire monitoring and emergency response.","PeriodicalId":12279,"journal":{"name":"Fire","volume":"1 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predict Future Transient Fire Heat Release Rates Based on Fire Imagery and Deep Learning\",\"authors\":\"Lei Xu, Jinyuan Dong, Delei Zou\",\"doi\":\"10.3390/fire7060200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fire heat release rate (HRR) is a crucial parameter for describing the combustion process and its thermal effects. In recent years, some studies have employed fire scene images and deep learning algorithms to predict real-time fire HRR, which has led to the advancement of HRR prediction in terms of both lightweightness and real-time monitoring. Nevertheless, the development of an early-stage monitoring system for fires and the ability to predict future HRR based on current moment data represents a crucial foundation for evaluating the scale of indoor fires and enhancing the capacity to prevent and control such incidents. This paper proposes a deep learning model based on continuous fire scene images (containing both flame and smoke features) and their time-series information to predict the future transient fire HRR. The model (Att-BiLSTM) comprises three bi-directional long- and short-term memory (Bi-LSTM) layers and one attention layer. The model employs a bidirectional feature extraction approach, followed by the introduction of an attention mechanism to highlight the image features that have a critical impact on the prediction results. In this paper, a large-scale dataset is constructed by collecting 27,231 fire scene images with instantaneous HRR annotations from 40 different fire trials from the NIST database. The experimental results demonstrate that Att-BiLSTM is capable of effectively utilizing fire scene image features and temporal information to accurately predict future transient HRR, including those in high-brightness fire environments and complex fire source situations. The research presented in this paper offers novel insights and methodologies for fire monitoring and emergency response.\",\"PeriodicalId\":12279,\"journal\":{\"name\":\"Fire\",\"volume\":\"1 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fire7060200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fire7060200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predict Future Transient Fire Heat Release Rates Based on Fire Imagery and Deep Learning
The fire heat release rate (HRR) is a crucial parameter for describing the combustion process and its thermal effects. In recent years, some studies have employed fire scene images and deep learning algorithms to predict real-time fire HRR, which has led to the advancement of HRR prediction in terms of both lightweightness and real-time monitoring. Nevertheless, the development of an early-stage monitoring system for fires and the ability to predict future HRR based on current moment data represents a crucial foundation for evaluating the scale of indoor fires and enhancing the capacity to prevent and control such incidents. This paper proposes a deep learning model based on continuous fire scene images (containing both flame and smoke features) and their time-series information to predict the future transient fire HRR. The model (Att-BiLSTM) comprises three bi-directional long- and short-term memory (Bi-LSTM) layers and one attention layer. The model employs a bidirectional feature extraction approach, followed by the introduction of an attention mechanism to highlight the image features that have a critical impact on the prediction results. In this paper, a large-scale dataset is constructed by collecting 27,231 fire scene images with instantaneous HRR annotations from 40 different fire trials from the NIST database. The experimental results demonstrate that Att-BiLSTM is capable of effectively utilizing fire scene image features and temporal information to accurately predict future transient HRR, including those in high-brightness fire environments and complex fire source situations. The research presented in this paper offers novel insights and methodologies for fire monitoring and emergency response.