利用 TLS 和 sUAS 点云监测堆石堤坝

IF 1.2 Q4 REMOTE SENSING
D. Bolkas, Matthew S. O'Banion, Jordan Laughlin, Jakeb Prickett
{"title":"利用 TLS 和 sUAS 点云监测堆石堤坝","authors":"D. Bolkas, Matthew S. O'Banion, Jordan Laughlin, Jakeb Prickett","doi":"10.1515/jag-2023-0038","DOIUrl":null,"url":null,"abstract":"Abstract Terrestrial laser scanning (TLS) and camera-equipped small unmanned aircraft systems (sUAS) are two methods that are often used to produce dense point clouds for several monitoring applications. This paper compares the two methods in their ability to provide accurate monitoring information for rockfill embankment dams. We compare the two methods in terms of their uncertainty, data completeness, and field data acquisition/processing challenges. For both datasets, we derive an error budget that considers registration and measurement uncertainty. We also proceed to merge the TLS and sUAS data and leverage the advantages of each method. Furthermore, we conduct an analysis of the multiscale model-to-model cloud comparison (M3C2) input parameters, namely projection scale, normal scale, and sub-sampling of the reference point cloud, to show their effect on the M3C2 distance estimation. The theoretical methodologies and practical considerations of this paper can assist surveyors, who conduct monitoring of rockfill embankment dams using point clouds, in establishing reliable change/deformation estimations.","PeriodicalId":45494,"journal":{"name":"Journal of Applied Geodesy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring of a rockfill embankment dam using TLS and sUAS point clouds\",\"authors\":\"D. Bolkas, Matthew S. O'Banion, Jordan Laughlin, Jakeb Prickett\",\"doi\":\"10.1515/jag-2023-0038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Terrestrial laser scanning (TLS) and camera-equipped small unmanned aircraft systems (sUAS) are two methods that are often used to produce dense point clouds for several monitoring applications. This paper compares the two methods in their ability to provide accurate monitoring information for rockfill embankment dams. We compare the two methods in terms of their uncertainty, data completeness, and field data acquisition/processing challenges. For both datasets, we derive an error budget that considers registration and measurement uncertainty. We also proceed to merge the TLS and sUAS data and leverage the advantages of each method. Furthermore, we conduct an analysis of the multiscale model-to-model cloud comparison (M3C2) input parameters, namely projection scale, normal scale, and sub-sampling of the reference point cloud, to show their effect on the M3C2 distance estimation. The theoretical methodologies and practical considerations of this paper can assist surveyors, who conduct monitoring of rockfill embankment dams using point clouds, in establishing reliable change/deformation estimations.\",\"PeriodicalId\":45494,\"journal\":{\"name\":\"Journal of Applied Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jag-2023-0038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2023-0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

摘要 地面激光扫描 (TLS) 和装有摄像头的小型无人机系统 (sUAS) 是两种常用的方法,可为多种监测应用生成密集的点云。本文比较了这两种方法为填石堤坝提供精确监测信息的能力。我们从不确定性、数据完整性和现场数据采集/处理挑战等方面对两种方法进行了比较。对于这两种数据集,我们都得出了考虑到登记和测量不确定性的误差预算。我们还着手合并 TLS 和 sUAS 数据,充分利用每种方法的优势。此外,我们还分析了多尺度模型到模型云比较(M3C2)的输入参数,即投影尺度、法线尺度和参考点云的子采样,以显示它们对 M3C2 距离估计的影响。本文的理论方法和实际考虑可帮助使用点云对堆石堤坝进行监测的测量人员建立可靠的变化/变形估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monitoring of a rockfill embankment dam using TLS and sUAS point clouds
Abstract Terrestrial laser scanning (TLS) and camera-equipped small unmanned aircraft systems (sUAS) are two methods that are often used to produce dense point clouds for several monitoring applications. This paper compares the two methods in their ability to provide accurate monitoring information for rockfill embankment dams. We compare the two methods in terms of their uncertainty, data completeness, and field data acquisition/processing challenges. For both datasets, we derive an error budget that considers registration and measurement uncertainty. We also proceed to merge the TLS and sUAS data and leverage the advantages of each method. Furthermore, we conduct an analysis of the multiscale model-to-model cloud comparison (M3C2) input parameters, namely projection scale, normal scale, and sub-sampling of the reference point cloud, to show their effect on the M3C2 distance estimation. The theoretical methodologies and practical considerations of this paper can assist surveyors, who conduct monitoring of rockfill embankment dams using point clouds, in establishing reliable change/deformation estimations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Geodesy
Journal of Applied Geodesy REMOTE SENSING-
CiteScore
2.30
自引率
7.10%
发文量
30
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信