通过热带几何实现超曲面的周期积分

Pub Date : 2024-06-14 DOI:10.1093/imrn/rnae123
Yuto Yamamoto
{"title":"通过热带几何实现超曲面的周期积分","authors":"Yuto Yamamoto","doi":"10.1093/imrn/rnae123","DOIUrl":null,"url":null,"abstract":"\n Let $\\left \\{ Z_{t} \\right \\}_{t}$ be a one-parameter family of complex hypersurfaces of dimension $d \\geq 1$ in a toric variety. We compute asymptotics of period integrals for $\\left \\{ Z_{t} \\right \\}_{t}$ by applying the method of Abouzaid–Ganatra–Iritani–Sheridan, which uses tropical geometry. As integrands, we consider Poincaré residues of meromorphic $(d+1)$-forms on the ambient toric variety, which have poles along the hypersurface $Z_{t}$. The cycles over which we integrate them are spheres and tori, which correspond to tropical $(0, d)$-cycles and $(d, 0)$-cycles on the tropicalization of $\\left \\{ Z_{t} \\right \\}_{t}$, respectively. In the case of $d=1$, we explicitly write down the polarized logarithmic Hodge structure of Kato–Usui at the limit as a corollary. Throughout this article, we impose the assumption that the tropicalization is dual to a unimodular triangulation of the Newton polytope.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Period Integrals of Hypersurfaces via Tropical Geometry\",\"authors\":\"Yuto Yamamoto\",\"doi\":\"10.1093/imrn/rnae123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Let $\\\\left \\\\{ Z_{t} \\\\right \\\\}_{t}$ be a one-parameter family of complex hypersurfaces of dimension $d \\\\geq 1$ in a toric variety. We compute asymptotics of period integrals for $\\\\left \\\\{ Z_{t} \\\\right \\\\}_{t}$ by applying the method of Abouzaid–Ganatra–Iritani–Sheridan, which uses tropical geometry. As integrands, we consider Poincaré residues of meromorphic $(d+1)$-forms on the ambient toric variety, which have poles along the hypersurface $Z_{t}$. The cycles over which we integrate them are spheres and tori, which correspond to tropical $(0, d)$-cycles and $(d, 0)$-cycles on the tropicalization of $\\\\left \\\\{ Z_{t} \\\\right \\\\}_{t}$, respectively. In the case of $d=1$, we explicitly write down the polarized logarithmic Hodge structure of Kato–Usui at the limit as a corollary. Throughout this article, we impose the assumption that the tropicalization is dual to a unimodular triangulation of the Newton polytope.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $left \{ Z_{t}\是一个环 variety 中维数为 $d \geq 1$ 的复超曲面的单参数族。我们计算了 $left \{ Z_{t} 的周期积分的渐近性。\的周期积分的渐近线。作为积分项,我们考虑了环境环状变上非定常$(d+1)$形式的泊恩卡雷残差,它们沿着超曲面$Z_{t}$有极点。我们对它们进行积分的循环是球面和环面,它们对应于 $left \{ Z_{t}$ 热带化上的热带 $(0, d)$ 循环和 $(d, 0)$ 循环。\右 \}_{t}$ 分别对应。在 $d=1$ 的情况下,作为推论,我们明确写出了卡托-乌绥在极限处的极化对数霍奇结构。在本文中,我们假设热带化与牛顿多面体的单模态三角剖分是对偶的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Period Integrals of Hypersurfaces via Tropical Geometry
Let $\left \{ Z_{t} \right \}_{t}$ be a one-parameter family of complex hypersurfaces of dimension $d \geq 1$ in a toric variety. We compute asymptotics of period integrals for $\left \{ Z_{t} \right \}_{t}$ by applying the method of Abouzaid–Ganatra–Iritani–Sheridan, which uses tropical geometry. As integrands, we consider Poincaré residues of meromorphic $(d+1)$-forms on the ambient toric variety, which have poles along the hypersurface $Z_{t}$. The cycles over which we integrate them are spheres and tori, which correspond to tropical $(0, d)$-cycles and $(d, 0)$-cycles on the tropicalization of $\left \{ Z_{t} \right \}_{t}$, respectively. In the case of $d=1$, we explicitly write down the polarized logarithmic Hodge structure of Kato–Usui at the limit as a corollary. Throughout this article, we impose the assumption that the tropicalization is dual to a unimodular triangulation of the Newton polytope.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信