恒定梯度温度下液晶弹性体弦-质量系统的自振荡

Dali Ge, Haiyi Liang, Kai Li
{"title":"恒定梯度温度下液晶弹性体弦-质量系统的自振荡","authors":"Dali Ge, Haiyi Liang, Kai Li","doi":"10.1115/1.4065733","DOIUrl":null,"url":null,"abstract":"\n Recent experiments have found that a fiber-mass system can self-oscillate along the vertical direction under a non-uniform temperature field, which necessitates significant vertical space. To address the challenge in adapting to situations with limited vertical space, the current work introduces a self-oscillating string-mass system, comprising of a mass ball and a thermos-responsive liquid crystal elastomer string exposed to a constant gradient temperature. By employing theoretical modeling and numerical simulation, we've identified two motion regimes of the system, namely, the static regime and the self-oscillation regime, and elucidated the mechanism of self-oscillation. Utilizing the analytical method, we derived the expressions for bifurcation point, amplitude and frequency of the self-oscillation, and investigated the impact of system parameters on these aspects, which were verified by numerical solutions. Compared to a fiber-mass system, the string-mass system has superior stability to deal with small horizontal disturbances, can amplify its amplitude and frequency limited by small thermal deformation of material, and saves a significant amount of vertical space. Given these attributes, such self-oscillating string-mass system presents novel possibilities for designing energy harvesters, active machinery and soft robots.","PeriodicalId":508156,"journal":{"name":"Journal of Applied Mechanics","volume":"19 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-oscillation of a liquid crystal elastomer string-mass system under constant gradient temperature\",\"authors\":\"Dali Ge, Haiyi Liang, Kai Li\",\"doi\":\"10.1115/1.4065733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Recent experiments have found that a fiber-mass system can self-oscillate along the vertical direction under a non-uniform temperature field, which necessitates significant vertical space. To address the challenge in adapting to situations with limited vertical space, the current work introduces a self-oscillating string-mass system, comprising of a mass ball and a thermos-responsive liquid crystal elastomer string exposed to a constant gradient temperature. By employing theoretical modeling and numerical simulation, we've identified two motion regimes of the system, namely, the static regime and the self-oscillation regime, and elucidated the mechanism of self-oscillation. Utilizing the analytical method, we derived the expressions for bifurcation point, amplitude and frequency of the self-oscillation, and investigated the impact of system parameters on these aspects, which were verified by numerical solutions. Compared to a fiber-mass system, the string-mass system has superior stability to deal with small horizontal disturbances, can amplify its amplitude and frequency limited by small thermal deformation of material, and saves a significant amount of vertical space. Given these attributes, such self-oscillating string-mass system presents novel possibilities for designing energy harvesters, active machinery and soft robots.\",\"PeriodicalId\":508156,\"journal\":{\"name\":\"Journal of Applied Mechanics\",\"volume\":\"19 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的实验发现,纤维-质量系统可以在非均匀温度场下沿垂直方向自振荡,而这需要很大的垂直空间。为了解决在垂直空间有限的情况下的适应挑战,目前的工作引入了一种自振荡串-质量系统,由质量球和暴露在恒定梯度温度下的热响应液晶弹性体串组成。通过理论建模和数值模拟,我们确定了系统的两种运动状态,即静态状态和自振状态,并阐明了自振的机理。利用分析方法,我们推导出了自振荡的分叉点、振幅和频率的表达式,并研究了系统参数对这些方面的影响,这些都得到了数值求解的验证。与纤维-质量系统相比,弦-质量系统在处理微小水平干扰时具有更高的稳定性,能在材料微小热变形的限制下放大振幅和频率,并能节省大量垂直空间。鉴于这些特性,这种自振弦-质量系统为设计能量收集器、主动机械和软机器人提供了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-oscillation of a liquid crystal elastomer string-mass system under constant gradient temperature
Recent experiments have found that a fiber-mass system can self-oscillate along the vertical direction under a non-uniform temperature field, which necessitates significant vertical space. To address the challenge in adapting to situations with limited vertical space, the current work introduces a self-oscillating string-mass system, comprising of a mass ball and a thermos-responsive liquid crystal elastomer string exposed to a constant gradient temperature. By employing theoretical modeling and numerical simulation, we've identified two motion regimes of the system, namely, the static regime and the self-oscillation regime, and elucidated the mechanism of self-oscillation. Utilizing the analytical method, we derived the expressions for bifurcation point, amplitude and frequency of the self-oscillation, and investigated the impact of system parameters on these aspects, which were verified by numerical solutions. Compared to a fiber-mass system, the string-mass system has superior stability to deal with small horizontal disturbances, can amplify its amplitude and frequency limited by small thermal deformation of material, and saves a significant amount of vertical space. Given these attributes, such self-oscillating string-mass system presents novel possibilities for designing energy harvesters, active machinery and soft robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信