L. A. Kulikov, D. A. Makeeva, A. M. Dubiniak, M. V. Terenina, Yu. S. Kardasheva, S. V. Egazar’yants, A. F. Bikbaeva, A. L. Maximov, E. A. Karakhanov
{"title":"多孔芳香族框架支撑的钌催化剂上的糠醛加氢反应","authors":"L. A. Kulikov, D. A. Makeeva, A. M. Dubiniak, M. V. Terenina, Yu. S. Kardasheva, S. V. Egazar’yants, A. F. Bikbaeva, A. L. Maximov, E. A. Karakhanov","doi":"10.1134/S0965544124020191","DOIUrl":null,"url":null,"abstract":"<p>The paper describes an investigation into hydrogenation of furfural over ruthenium catalysts supported on porous aromatic frameworks. The supports were designated as PAF-30-SO<sub>3</sub>H, PAF-30-NH<sub>2</sub>, and PAF-30. The synthesized catalysts were tested in furfural hydrogenation carried out in water and in tetrahydrofuran (with a concentration of 10 wt %) at 90–250°C and a hydrogen pressure of 3 MPa. Although the highest furfural conversion (96%) was achieved in the case of its hydrogenation in water at 250°C over Ru-PAF-30, these conditions did not favor product selectivity. The reaction products mainly consisted of furfuryl alcohol, tetrahydrofurfuryl alcohol, and cyclopentanone. The highest yield of cyclopentanone, 71% (with 80% conversion and 89% selectivity) was observed in furfural hydrogenation over Ru-PAF-30 at 200°C, whereas the conditions optimal for selective hydrogenation of furfural into furfuryl alcohol were found to include either tetrahydrofuran as a solvent or water as a solvent and low temperatures (90–150°C).</p>","PeriodicalId":725,"journal":{"name":"Petroleum Chemistry","volume":"64 4","pages":"471 - 479"},"PeriodicalIF":1.3000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogenation of Furfural over Ruthenium Catalysts Supported on Porous Aromatic Frameworks\",\"authors\":\"L. A. Kulikov, D. A. Makeeva, A. M. Dubiniak, M. V. Terenina, Yu. S. Kardasheva, S. V. Egazar’yants, A. F. Bikbaeva, A. L. Maximov, E. A. Karakhanov\",\"doi\":\"10.1134/S0965544124020191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper describes an investigation into hydrogenation of furfural over ruthenium catalysts supported on porous aromatic frameworks. The supports were designated as PAF-30-SO<sub>3</sub>H, PAF-30-NH<sub>2</sub>, and PAF-30. The synthesized catalysts were tested in furfural hydrogenation carried out in water and in tetrahydrofuran (with a concentration of 10 wt %) at 90–250°C and a hydrogen pressure of 3 MPa. Although the highest furfural conversion (96%) was achieved in the case of its hydrogenation in water at 250°C over Ru-PAF-30, these conditions did not favor product selectivity. The reaction products mainly consisted of furfuryl alcohol, tetrahydrofurfuryl alcohol, and cyclopentanone. The highest yield of cyclopentanone, 71% (with 80% conversion and 89% selectivity) was observed in furfural hydrogenation over Ru-PAF-30 at 200°C, whereas the conditions optimal for selective hydrogenation of furfural into furfuryl alcohol were found to include either tetrahydrofuran as a solvent or water as a solvent and low temperatures (90–150°C).</p>\",\"PeriodicalId\":725,\"journal\":{\"name\":\"Petroleum Chemistry\",\"volume\":\"64 4\",\"pages\":\"471 - 479\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0965544124020191\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Chemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0965544124020191","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Hydrogenation of Furfural over Ruthenium Catalysts Supported on Porous Aromatic Frameworks
The paper describes an investigation into hydrogenation of furfural over ruthenium catalysts supported on porous aromatic frameworks. The supports were designated as PAF-30-SO3H, PAF-30-NH2, and PAF-30. The synthesized catalysts were tested in furfural hydrogenation carried out in water and in tetrahydrofuran (with a concentration of 10 wt %) at 90–250°C and a hydrogen pressure of 3 MPa. Although the highest furfural conversion (96%) was achieved in the case of its hydrogenation in water at 250°C over Ru-PAF-30, these conditions did not favor product selectivity. The reaction products mainly consisted of furfuryl alcohol, tetrahydrofurfuryl alcohol, and cyclopentanone. The highest yield of cyclopentanone, 71% (with 80% conversion and 89% selectivity) was observed in furfural hydrogenation over Ru-PAF-30 at 200°C, whereas the conditions optimal for selective hydrogenation of furfural into furfuryl alcohol were found to include either tetrahydrofuran as a solvent or water as a solvent and low temperatures (90–150°C).
期刊介绍:
Petroleum Chemistry (Neftekhimiya), founded in 1961, offers original papers on and reviews of theoretical and experimental studies concerned with current problems of petroleum chemistry and processing such as chemical composition of crude oils and natural gas liquids; petroleum refining (cracking, hydrocracking, and catalytic reforming); catalysts for petrochemical processes (hydrogenation, isomerization, oxidation, hydroformylation, etc.); activation and catalytic transformation of hydrocarbons and other components of petroleum, natural gas, and other complex organic mixtures; new petrochemicals including lubricants and additives; environmental problems; and information on scientific meetings relevant to these areas.
Petroleum Chemistry publishes articles on these topics from members of the scientific community of the former Soviet Union.