在𝔽_{𝕢}[𝕥]中的单不可还原多项式上的二次迪里夏特𝐿函数的大值

IF 0.8 3区 数学 Q2 MATHEMATICS
Pranendu Darbar, Gopal Maiti
{"title":"在𝔽_{𝕢}[𝕥]中的单不可还原多项式上的二次迪里夏特𝐿函数的大值","authors":"Pranendu Darbar, Gopal Maiti","doi":"10.1090/proc/16828","DOIUrl":null,"url":null,"abstract":"<p>We prove an <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Ω</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Omega</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-result for the quadratic Dirichlet <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-function <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue upper L left-parenthesis 1 slash 2 comma chi Subscript upper P Baseline right-parenthesis EndAbsoluteValue\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>χ</mml:mi>\n <mml:mi>P</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">|L(1/2, \\chi _P)|</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over irreducible polynomials <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P\">\n <mml:semantics>\n <mml:mi>P</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">P</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> associated with the hyperelliptic curve of genus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\">\n <mml:semantics>\n <mml:mi>g</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">g</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over a fixed finite field <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper F Subscript q\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">F</mml:mi>\n </mml:mrow>\n <mml:mi>q</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {F}_q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the large genus limit. In particular, we showed that for any <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon element-of left-parenthesis 0 comma 1 slash 2 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ϵ</mml:mi>\n <mml:mo>∈</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\epsilon \\in (0, 1/2)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <disp-formula content-type=\"math/mathml\">\n\\[\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"max Underscript StartLayout 1st Row upper P element-of script upper P Subscript 2 g plus 1 Baseline EndLayout Endscripts StartAbsoluteValue upper L left-parenthesis 1 slash 2 comma chi Subscript upper P Baseline right-parenthesis EndAbsoluteValue much-greater-than exp left-parenthesis left-parenthesis StartRoot left-parenthesis 1 slash 2 minus epsilon right-parenthesis ln q EndRoot plus o left-parenthesis 1 right-parenthesis right-parenthesis StartRoot StartFraction g ln Subscript 2 Baseline g Over ln g EndFraction EndRoot right-parenthesis comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:munder>\n <mml:mo movablelimits=\"true\" form=\"prefix\">max</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mstyle scriptlevel=\"1\">\n <mml:mtable rowspacing=\"0.1em\" columnspacing=\"0em\" displaystyle=\"false\">\n <mml:mtr>\n <mml:mtd>\n <mml:mi>P</mml:mi>\n <mml:mo>∈</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">P</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mi>g</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msub>\n </mml:mtd>\n </mml:mtr>\n </mml:mtable>\n </mml:mstyle>\n </mml:mrow>\n </mml:munder>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>χ</mml:mi>\n <mml:mi>P</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mo>≫</mml:mo>\n <mml:mi>exp</mml:mi>\n <mml:mo>⁡</mml:mo>\n <mml:mrow>\n <mml:mo>(</mml:mo>\n <mml:mrow>\n <mml:mo>(</mml:mo>\n <mml:msqrt>\n <mml:mrow>\n <mml:mo>(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mo>−</mml:mo>\n <mml:mi>ϵ</mml:mi>\n <mml:mo>)</mml:mo>\n </mml:mrow>\n <mml:mi>ln</mml:mi>\n <mml:mo>⁡</mml:mo>\n <mml:mi>q</mml:mi>\n </mml:msqrt>\n <mml:mo>+</mml:mo>\n <mml:mi>o</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>)</mml:mo>\n </mml:mrow>\n <mml:msqrt>\n <mml:mfrac>\n <mml:mrow>\n <mml:mi>g</mml:mi>\n <mml:msub>\n <mml:mi>ln</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo>⁡</mml:mo>\n <mml:mi>g</mml:mi>\n </mml:mrow>\n <mml:mrow>\n <mml:mi>ln</mml:mi>\n <mml:mo>⁡</mml:mo>\n <mml:mi>g</mml:mi>\n </mml:mrow>\n </mml:mfrac>\n </mml:msqrt>\n <mml:mo>)</mml:mo>\n </mml:mrow>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\max _{\\substack {P\\in \\mathcal {P}_{2g+1}}}|L(1/2, \\chi _P)|\\gg \\exp \\left (\\left (\\sqrt {\\left (1/2-\\epsilon \\right )\\ln q}+o(1)\\right )\\sqrt {\\frac {g \\ln _2 g}{\\ln g}}\\right ),</mml:annotation>\n </mml:semantics>\n</mml:math>\n\\]\n</disp-formula> where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper P Subscript 2 g plus 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">P</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mi>g</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {P}_{2g+1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the set of all monic irreducible polynomials of degree <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 g plus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mi>g</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2g+1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This matches with the order of magnitude of the Bondarenko–Seip bound.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large values of quadratic Dirichlet 𝐿-functions over monic irreducible polynomial in 𝔽_{𝕢}[𝕥]\",\"authors\":\"Pranendu Darbar, Gopal Maiti\",\"doi\":\"10.1090/proc/16828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove an <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Omega\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Ω</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Omega</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-result for the quadratic Dirichlet <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\">\\n <mml:semantics>\\n <mml:mi>L</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-function <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartAbsoluteValue upper L left-parenthesis 1 slash 2 comma chi Subscript upper P Baseline right-parenthesis EndAbsoluteValue\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mi>L</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>χ</mml:mi>\\n <mml:mi>P</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">|L(1/2, \\\\chi _P)|</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> over irreducible polynomials <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper P\\\">\\n <mml:semantics>\\n <mml:mi>P</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">P</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> associated with the hyperelliptic curve of genus <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g\\\">\\n <mml:semantics>\\n <mml:mi>g</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">g</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> over a fixed finite field <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper F Subscript q\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">F</mml:mi>\\n </mml:mrow>\\n <mml:mi>q</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {F}_q</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> in the large genus limit. In particular, we showed that for any <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon element-of left-parenthesis 0 comma 1 slash 2 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>ϵ</mml:mi>\\n <mml:mo>∈</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\epsilon \\\\in (0, 1/2)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <disp-formula content-type=\\\"math/mathml\\\">\\n\\\\[\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"max Underscript StartLayout 1st Row upper P element-of script upper P Subscript 2 g plus 1 Baseline EndLayout Endscripts StartAbsoluteValue upper L left-parenthesis 1 slash 2 comma chi Subscript upper P Baseline right-parenthesis EndAbsoluteValue much-greater-than exp left-parenthesis left-parenthesis StartRoot left-parenthesis 1 slash 2 minus epsilon right-parenthesis ln q EndRoot plus o left-parenthesis 1 right-parenthesis right-parenthesis StartRoot StartFraction g ln Subscript 2 Baseline g Over ln g EndFraction EndRoot right-parenthesis comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:munder>\\n <mml:mo movablelimits=\\\"true\\\" form=\\\"prefix\\\">max</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mstyle scriptlevel=\\\"1\\\">\\n <mml:mtable rowspacing=\\\"0.1em\\\" columnspacing=\\\"0em\\\" displaystyle=\\\"false\\\">\\n <mml:mtr>\\n <mml:mtd>\\n <mml:mi>P</mml:mi>\\n <mml:mo>∈</mml:mo>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n <mml:mi>g</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msub>\\n </mml:mtd>\\n </mml:mtr>\\n </mml:mtable>\\n </mml:mstyle>\\n </mml:mrow>\\n </mml:munder>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mi>L</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>χ</mml:mi>\\n <mml:mi>P</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mo>≫</mml:mo>\\n <mml:mi>exp</mml:mi>\\n <mml:mo>⁡</mml:mo>\\n <mml:mrow>\\n <mml:mo>(</mml:mo>\\n <mml:mrow>\\n <mml:mo>(</mml:mo>\\n <mml:msqrt>\\n <mml:mrow>\\n <mml:mo>(</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mo>−</mml:mo>\\n <mml:mi>ϵ</mml:mi>\\n <mml:mo>)</mml:mo>\\n </mml:mrow>\\n <mml:mi>ln</mml:mi>\\n <mml:mo>⁡</mml:mo>\\n <mml:mi>q</mml:mi>\\n </mml:msqrt>\\n <mml:mo>+</mml:mo>\\n <mml:mi>o</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>)</mml:mo>\\n </mml:mrow>\\n <mml:msqrt>\\n <mml:mfrac>\\n <mml:mrow>\\n <mml:mi>g</mml:mi>\\n <mml:msub>\\n <mml:mi>ln</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo>⁡</mml:mo>\\n <mml:mi>g</mml:mi>\\n </mml:mrow>\\n <mml:mrow>\\n <mml:mi>ln</mml:mi>\\n <mml:mo>⁡</mml:mo>\\n <mml:mi>g</mml:mi>\\n </mml:mrow>\\n </mml:mfrac>\\n </mml:msqrt>\\n <mml:mo>)</mml:mo>\\n </mml:mrow>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\max _{\\\\substack {P\\\\in \\\\mathcal {P}_{2g+1}}}|L(1/2, \\\\chi _P)|\\\\gg \\\\exp \\\\left (\\\\left (\\\\sqrt {\\\\left (1/2-\\\\epsilon \\\\right )\\\\ln q}+o(1)\\\\right )\\\\sqrt {\\\\frac {g \\\\ln _2 g}{\\\\ln g}}\\\\right ),</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n\\\\]\\n</disp-formula> where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper P Subscript 2 g plus 1\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n <mml:mi>g</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {P}_{2g+1}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the set of all monic irreducible polynomials of degree <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 g plus 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mi>g</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2g+1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. This matches with the order of magnitude of the Bondarenko–Seip bound.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16828\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16828","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了二次 Dirichlet L L -函数 | L ( 1 / 2 , χ P ) | L(1/2, \chi _P)| 上不可还原多项式 P P 的 Ω \Omega 结果。 |L(1/2, \chi _P)| 与大属极限中固定有限域 F q 上属 g g 的超椭圆曲线 P P 相关的不可约多项式。特别是,我们证明了对于任何 ∈ ( 0 , 1 / 2 ) \epsilon \ in (0, 1/2) , \[ max P ∈ P 2 g + 1 | L ( 1 / 2 , χ P ) ≫ exp ( ( 1 / 2 - ϵ ) ln q + o ( 1 ) ) g ln 2 g ln g ) , \max _\{substack {P\in \mathcal {P}_{2g+1}}}||L(1/2, \chi _P)|\gg \exp \left (\left (\sqrt {left (1/2-\epsilon \right )\ln q}+o(1)\right )\sqrt {\frac {g \ln _2 g}{\ln g}}\right )、 \其中 P 2 g + 1 {P}_{2g+1} 是所有度数为 2 g + 1 2g+1 的一元不可约多项式的集合。这与邦达连科-塞普边界的数量级相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large values of quadratic Dirichlet 𝐿-functions over monic irreducible polynomial in 𝔽_{𝕢}[𝕥]

We prove an Ω \Omega -result for the quadratic Dirichlet L L -function | L ( 1 / 2 , χ P ) | |L(1/2, \chi _P)| over irreducible polynomials P P associated with the hyperelliptic curve of genus g g over a fixed finite field F q \mathbb {F}_q in the large genus limit. In particular, we showed that for any ϵ ( 0 , 1 / 2 ) \epsilon \in (0, 1/2) , \[ max P P 2 g + 1 | L ( 1 / 2 , χ P ) | exp ( ( ( 1 / 2 ϵ ) ln q + o ( 1 ) ) g ln 2 g ln g ) , \max _{\substack {P\in \mathcal {P}_{2g+1}}}|L(1/2, \chi _P)|\gg \exp \left (\left (\sqrt {\left (1/2-\epsilon \right )\ln q}+o(1)\right )\sqrt {\frac {g \ln _2 g}{\ln g}}\right ), \] where P 2 g + 1 \mathcal {P}_{2g+1} is the set of all monic irreducible polynomials of degree 2 g + 1 2g+1 . This matches with the order of magnitude of the Bondarenko–Seip bound.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
207
审稿时长
2-4 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信