求助PDF
{"title":"在𝔽_{𝕢}[𝕥]中的单不可还原多项式上的二次迪里夏特𝐿函数的大值","authors":"Pranendu Darbar, Gopal Maiti","doi":"10.1090/proc/16828","DOIUrl":null,"url":null,"abstract":"<p>We prove an <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega\">\n <mml:semantics>\n <mml:mi mathvariant=\"normal\">Ω</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\Omega</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-result for the quadratic Dirichlet <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-function <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue upper L left-parenthesis 1 slash 2 comma chi Subscript upper P Baseline right-parenthesis EndAbsoluteValue\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>χ</mml:mi>\n <mml:mi>P</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">|L(1/2, \\chi _P)|</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over irreducible polynomials <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P\">\n <mml:semantics>\n <mml:mi>P</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">P</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> associated with the hyperelliptic curve of genus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\">\n <mml:semantics>\n <mml:mi>g</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">g</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> over a fixed finite field <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper F Subscript q\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">F</mml:mi>\n </mml:mrow>\n <mml:mi>q</mml:mi>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {F}_q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the large genus limit. In particular, we showed that for any <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon element-of left-parenthesis 0 comma 1 slash 2 right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ϵ</mml:mi>\n <mml:mo>∈</mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>0</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\epsilon \\in (0, 1/2)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <disp-formula content-type=\"math/mathml\">\n\\[\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"max Underscript StartLayout 1st Row upper P element-of script upper P Subscript 2 g plus 1 Baseline EndLayout Endscripts StartAbsoluteValue upper L left-parenthesis 1 slash 2 comma chi Subscript upper P Baseline right-parenthesis EndAbsoluteValue much-greater-than exp left-parenthesis left-parenthesis StartRoot left-parenthesis 1 slash 2 minus epsilon right-parenthesis ln q EndRoot plus o left-parenthesis 1 right-parenthesis right-parenthesis StartRoot StartFraction g ln Subscript 2 Baseline g Over ln g EndFraction EndRoot right-parenthesis comma\">\n <mml:semantics>\n <mml:mrow>\n <mml:munder>\n <mml:mo movablelimits=\"true\" form=\"prefix\">max</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mstyle scriptlevel=\"1\">\n <mml:mtable rowspacing=\"0.1em\" columnspacing=\"0em\" displaystyle=\"false\">\n <mml:mtr>\n <mml:mtd>\n <mml:mi>P</mml:mi>\n <mml:mo>∈</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">P</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mi>g</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msub>\n </mml:mtd>\n </mml:mtr>\n </mml:mtable>\n </mml:mstyle>\n </mml:mrow>\n </mml:munder>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:msub>\n <mml:mi>χ</mml:mi>\n <mml:mi>P</mml:mi>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mo>≫</mml:mo>\n <mml:mi>exp</mml:mi>\n <mml:mo></mml:mo>\n <mml:mrow>\n <mml:mo>(</mml:mo>\n <mml:mrow>\n <mml:mo>(</mml:mo>\n <mml:msqrt>\n <mml:mrow>\n <mml:mo>(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mo>−</mml:mo>\n <mml:mi>ϵ</mml:mi>\n <mml:mo>)</mml:mo>\n </mml:mrow>\n <mml:mi>ln</mml:mi>\n <mml:mo></mml:mo>\n <mml:mi>q</mml:mi>\n </mml:msqrt>\n <mml:mo>+</mml:mo>\n <mml:mi>o</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>)</mml:mo>\n </mml:mrow>\n <mml:msqrt>\n <mml:mfrac>\n <mml:mrow>\n <mml:mi>g</mml:mi>\n <mml:msub>\n <mml:mi>ln</mml:mi>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo></mml:mo>\n <mml:mi>g</mml:mi>\n </mml:mrow>\n <mml:mrow>\n <mml:mi>ln</mml:mi>\n <mml:mo></mml:mo>\n <mml:mi>g</mml:mi>\n </mml:mrow>\n </mml:mfrac>\n </mml:msqrt>\n <mml:mo>)</mml:mo>\n </mml:mrow>\n <mml:mo>,</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\max _{\\substack {P\\in \\mathcal {P}_{2g+1}}}|L(1/2, \\chi _P)|\\gg \\exp \\left (\\left (\\sqrt {\\left (1/2-\\epsilon \\right )\\ln q}+o(1)\\right )\\sqrt {\\frac {g \\ln _2 g}{\\ln g}}\\right ),</mml:annotation>\n </mml:semantics>\n</mml:math>\n\\]\n</disp-formula> where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper P Subscript 2 g plus 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">P</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n <mml:mi>g</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {P}_{2g+1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the set of all monic irreducible polynomials of degree <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 g plus 1\">\n <mml:semantics>\n <mml:mrow>\n <mml:mn>2</mml:mn>\n <mml:mi>g</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">2g+1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. This matches with the order of magnitude of the Bondarenko–Seip bound.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large values of quadratic Dirichlet 𝐿-functions over monic irreducible polynomial in 𝔽_{𝕢}[𝕥]\",\"authors\":\"Pranendu Darbar, Gopal Maiti\",\"doi\":\"10.1090/proc/16828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove an <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Omega\\\">\\n <mml:semantics>\\n <mml:mi mathvariant=\\\"normal\\\">Ω</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Omega</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-result for the quadratic Dirichlet <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\">\\n <mml:semantics>\\n <mml:mi>L</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-function <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartAbsoluteValue upper L left-parenthesis 1 slash 2 comma chi Subscript upper P Baseline right-parenthesis EndAbsoluteValue\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mi>L</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>χ</mml:mi>\\n <mml:mi>P</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">|L(1/2, \\\\chi _P)|</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> over irreducible polynomials <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper P\\\">\\n <mml:semantics>\\n <mml:mi>P</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">P</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> associated with the hyperelliptic curve of genus <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g\\\">\\n <mml:semantics>\\n <mml:mi>g</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">g</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> over a fixed finite field <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper F Subscript q\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">F</mml:mi>\\n </mml:mrow>\\n <mml:mi>q</mml:mi>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {F}_q</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> in the large genus limit. In particular, we showed that for any <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon element-of left-parenthesis 0 comma 1 slash 2 right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>ϵ</mml:mi>\\n <mml:mo>∈</mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>0</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\epsilon \\\\in (0, 1/2)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, <disp-formula content-type=\\\"math/mathml\\\">\\n\\\\[\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"max Underscript StartLayout 1st Row upper P element-of script upper P Subscript 2 g plus 1 Baseline EndLayout Endscripts StartAbsoluteValue upper L left-parenthesis 1 slash 2 comma chi Subscript upper P Baseline right-parenthesis EndAbsoluteValue much-greater-than exp left-parenthesis left-parenthesis StartRoot left-parenthesis 1 slash 2 minus epsilon right-parenthesis ln q EndRoot plus o left-parenthesis 1 right-parenthesis right-parenthesis StartRoot StartFraction g ln Subscript 2 Baseline g Over ln g EndFraction EndRoot right-parenthesis comma\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:munder>\\n <mml:mo movablelimits=\\\"true\\\" form=\\\"prefix\\\">max</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mstyle scriptlevel=\\\"1\\\">\\n <mml:mtable rowspacing=\\\"0.1em\\\" columnspacing=\\\"0em\\\" displaystyle=\\\"false\\\">\\n <mml:mtr>\\n <mml:mtd>\\n <mml:mi>P</mml:mi>\\n <mml:mo>∈</mml:mo>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n <mml:mi>g</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msub>\\n </mml:mtd>\\n </mml:mtr>\\n </mml:mtable>\\n </mml:mstyle>\\n </mml:mrow>\\n </mml:munder>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mi>L</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mo>,</mml:mo>\\n <mml:msub>\\n <mml:mi>χ</mml:mi>\\n <mml:mi>P</mml:mi>\\n </mml:msub>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mo>≫</mml:mo>\\n <mml:mi>exp</mml:mi>\\n <mml:mo></mml:mo>\\n <mml:mrow>\\n <mml:mo>(</mml:mo>\\n <mml:mrow>\\n <mml:mo>(</mml:mo>\\n <mml:msqrt>\\n <mml:mrow>\\n <mml:mo>(</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mo>−</mml:mo>\\n <mml:mi>ϵ</mml:mi>\\n <mml:mo>)</mml:mo>\\n </mml:mrow>\\n <mml:mi>ln</mml:mi>\\n <mml:mo></mml:mo>\\n <mml:mi>q</mml:mi>\\n </mml:msqrt>\\n <mml:mo>+</mml:mo>\\n <mml:mi>o</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>)</mml:mo>\\n </mml:mrow>\\n <mml:msqrt>\\n <mml:mfrac>\\n <mml:mrow>\\n <mml:mi>g</mml:mi>\\n <mml:msub>\\n <mml:mi>ln</mml:mi>\\n <mml:mn>2</mml:mn>\\n </mml:msub>\\n <mml:mo></mml:mo>\\n <mml:mi>g</mml:mi>\\n </mml:mrow>\\n <mml:mrow>\\n <mml:mi>ln</mml:mi>\\n <mml:mo></mml:mo>\\n <mml:mi>g</mml:mi>\\n </mml:mrow>\\n </mml:mfrac>\\n </mml:msqrt>\\n <mml:mo>)</mml:mo>\\n </mml:mrow>\\n <mml:mo>,</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\max _{\\\\substack {P\\\\in \\\\mathcal {P}_{2g+1}}}|L(1/2, \\\\chi _P)|\\\\gg \\\\exp \\\\left (\\\\left (\\\\sqrt {\\\\left (1/2-\\\\epsilon \\\\right )\\\\ln q}+o(1)\\\\right )\\\\sqrt {\\\\frac {g \\\\ln _2 g}{\\\\ln g}}\\\\right ),</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n\\\\]\\n</disp-formula> where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper P Subscript 2 g plus 1\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">P</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>2</mml:mn>\\n <mml:mi>g</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {P}_{2g+1}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the set of all monic irreducible polynomials of degree <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2 g plus 1\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mn>2</mml:mn>\\n <mml:mi>g</mml:mi>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2g+1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. This matches with the order of magnitude of the Bondarenko–Seip bound.</p>\",\"PeriodicalId\":20696,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/proc/16828\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16828","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
摘要
我们证明了二次 Dirichlet L L -函数 | L ( 1 / 2 , χ P ) | L(1/2, \chi _P)| 上不可还原多项式 P P 的 Ω \Omega 结果。 |L(1/2, \chi _P)| 与大属极限中固定有限域 F q 上属 g g 的超椭圆曲线 P P 相关的不可约多项式。特别是,我们证明了对于任何 ∈ ( 0 , 1 / 2 ) \epsilon \ in (0, 1/2) , \[ max P ∈ P 2 g + 1 | L ( 1 / 2 , χ P ) ≫ exp ( ( 1 / 2 - ϵ ) ln q + o ( 1 ) ) g ln 2 g ln g ) , \max _\{substack {P\in \mathcal {P}_{2g+1}}}||L(1/2, \chi _P)|\gg \exp \left (\left (\sqrt {left (1/2-\epsilon \right )\ln q}+o(1)\right )\sqrt {\frac {g \ln _2 g}{\ln g}}\right )、 \其中 P 2 g + 1 {P}_{2g+1} 是所有度数为 2 g + 1 2g+1 的一元不可约多项式的集合。这与邦达连科-塞普边界的数量级相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。