{"title":"Pt-Skin Pt3Cu(111)表面对氧气离解吸附的第一原理研究","authors":"Yanlin Yu, Huaizhang Gu, Mingan Fu, Ying Wang, Xin Fan, Mingqu Zhang, Guojiang Wu","doi":"10.3390/catal14060382","DOIUrl":null,"url":null,"abstract":"The O2 dissociative adsorption serves as a pivotal criterion for assessing the efficacy of oxygen reduction catalysts. We conducted a systematic investigation into O2 dissociative adsorption on the Pt-skin Pt3Cu(111) surface by means of the density functional theory (DFT). The computational findings reveal that the O2 adsorption on Pt-skin Pt3Cu(111) surface exhibits comparatively lower stability when contrasted with that on the Pt(111) surface. For O2 dissociation, two paths have been identified. One progresses from the t-f-b state towards the generation of two oxygen atoms situated within nearest-neighbour hcp sites. The other commences from the t-b-t state, leading to the generation of two oxygen atoms occupying nearest-neighbour fcc sites. Moreover, the analysis of the energy barrier associated with O2 dissociation indicates that O2 on the Pt-skin Pt3Cu(111) surface is more difficult to dissociate than on the Pt(111) surface. This study can offer a valuable guide for the practical application of high-performance oxygen reduction catalysts.","PeriodicalId":505577,"journal":{"name":"Catalysts","volume":"49 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First Principles Study of O2 Dissociative Adsorption on Pt-Skin Pt3Cu(111) Surface\",\"authors\":\"Yanlin Yu, Huaizhang Gu, Mingan Fu, Ying Wang, Xin Fan, Mingqu Zhang, Guojiang Wu\",\"doi\":\"10.3390/catal14060382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The O2 dissociative adsorption serves as a pivotal criterion for assessing the efficacy of oxygen reduction catalysts. We conducted a systematic investigation into O2 dissociative adsorption on the Pt-skin Pt3Cu(111) surface by means of the density functional theory (DFT). The computational findings reveal that the O2 adsorption on Pt-skin Pt3Cu(111) surface exhibits comparatively lower stability when contrasted with that on the Pt(111) surface. For O2 dissociation, two paths have been identified. One progresses from the t-f-b state towards the generation of two oxygen atoms situated within nearest-neighbour hcp sites. The other commences from the t-b-t state, leading to the generation of two oxygen atoms occupying nearest-neighbour fcc sites. Moreover, the analysis of the energy barrier associated with O2 dissociation indicates that O2 on the Pt-skin Pt3Cu(111) surface is more difficult to dissociate than on the Pt(111) surface. This study can offer a valuable guide for the practical application of high-performance oxygen reduction catalysts.\",\"PeriodicalId\":505577,\"journal\":{\"name\":\"Catalysts\",\"volume\":\"49 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/catal14060382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/catal14060382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
First Principles Study of O2 Dissociative Adsorption on Pt-Skin Pt3Cu(111) Surface
The O2 dissociative adsorption serves as a pivotal criterion for assessing the efficacy of oxygen reduction catalysts. We conducted a systematic investigation into O2 dissociative adsorption on the Pt-skin Pt3Cu(111) surface by means of the density functional theory (DFT). The computational findings reveal that the O2 adsorption on Pt-skin Pt3Cu(111) surface exhibits comparatively lower stability when contrasted with that on the Pt(111) surface. For O2 dissociation, two paths have been identified. One progresses from the t-f-b state towards the generation of two oxygen atoms situated within nearest-neighbour hcp sites. The other commences from the t-b-t state, leading to the generation of two oxygen atoms occupying nearest-neighbour fcc sites. Moreover, the analysis of the energy barrier associated with O2 dissociation indicates that O2 on the Pt-skin Pt3Cu(111) surface is more difficult to dissociate than on the Pt(111) surface. This study can offer a valuable guide for the practical application of high-performance oxygen reduction catalysts.