{"title":"考虑到沿线队列回溢以及对非优先交通的负面影响的紧急车辆交通信号抢行系统","authors":"Yen-Yu Chen, Jin-Yuan Wang, Shih-Ching Lo, Wei-Ting Sung","doi":"10.1049/itr2.12518","DOIUrl":null,"url":null,"abstract":"<p>In urban areas, emergency vehicles (EVs) need efficient traffic signal preemption to ensure timely responses during peak hours. While emergency vehicle traffic signal preemption (EVTSP) has garnered significant attention in the literature, the issues of queue spillbacks and negative impacts on non-priority traffic have been relatively underreported. These issues are particularly critical during peak hours, notably in densely populated urban areas. This study presents an EVTSP system that considers queue spillbacks on approaches along the routes of EVs and the negative impacts of signal preemption on non-priority traffic. The proposed control system has four key components: (1) a queue length management algorithm to ensure that an EV will not be impeded by excessive queues, particularly on its initial approaches along its route; (2) a signal preemption algorithm to guarantee uninterrupted passage of an EV even for approaches experiencing queue spillbacks; (3) a traffic status recovery algorithm to alleviate the extra waiting time for non-priority vehicles after an EV crosses each intersection; and (4) a signal plan recovery algorithm to smoothly transit traffic signals to normal operation. The experimental results confirm that the proposed system considerably improves the travel time of an EV and mitigates the negative impacts on non-priority traffic.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 8","pages":"1385-1395"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12518","citationCount":"0","resultStr":"{\"title\":\"An emergency vehicle traffic signal preemption system considering queue spillbacks along routes and negative impacts on non-priority traffic\",\"authors\":\"Yen-Yu Chen, Jin-Yuan Wang, Shih-Ching Lo, Wei-Ting Sung\",\"doi\":\"10.1049/itr2.12518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In urban areas, emergency vehicles (EVs) need efficient traffic signal preemption to ensure timely responses during peak hours. While emergency vehicle traffic signal preemption (EVTSP) has garnered significant attention in the literature, the issues of queue spillbacks and negative impacts on non-priority traffic have been relatively underreported. These issues are particularly critical during peak hours, notably in densely populated urban areas. This study presents an EVTSP system that considers queue spillbacks on approaches along the routes of EVs and the negative impacts of signal preemption on non-priority traffic. The proposed control system has four key components: (1) a queue length management algorithm to ensure that an EV will not be impeded by excessive queues, particularly on its initial approaches along its route; (2) a signal preemption algorithm to guarantee uninterrupted passage of an EV even for approaches experiencing queue spillbacks; (3) a traffic status recovery algorithm to alleviate the extra waiting time for non-priority vehicles after an EV crosses each intersection; and (4) a signal plan recovery algorithm to smoothly transit traffic signals to normal operation. The experimental results confirm that the proposed system considerably improves the travel time of an EV and mitigates the negative impacts on non-priority traffic.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"18 8\",\"pages\":\"1385-1395\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12518\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12518\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12518","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An emergency vehicle traffic signal preemption system considering queue spillbacks along routes and negative impacts on non-priority traffic
In urban areas, emergency vehicles (EVs) need efficient traffic signal preemption to ensure timely responses during peak hours. While emergency vehicle traffic signal preemption (EVTSP) has garnered significant attention in the literature, the issues of queue spillbacks and negative impacts on non-priority traffic have been relatively underreported. These issues are particularly critical during peak hours, notably in densely populated urban areas. This study presents an EVTSP system that considers queue spillbacks on approaches along the routes of EVs and the negative impacts of signal preemption on non-priority traffic. The proposed control system has four key components: (1) a queue length management algorithm to ensure that an EV will not be impeded by excessive queues, particularly on its initial approaches along its route; (2) a signal preemption algorithm to guarantee uninterrupted passage of an EV even for approaches experiencing queue spillbacks; (3) a traffic status recovery algorithm to alleviate the extra waiting time for non-priority vehicles after an EV crosses each intersection; and (4) a signal plan recovery algorithm to smoothly transit traffic signals to normal operation. The experimental results confirm that the proposed system considerably improves the travel time of an EV and mitigates the negative impacts on non-priority traffic.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf