Yusheng Zhao, Arash Shakeri, Ahmed A. Hefny, Praveen P. N. Rao
{"title":"N-苄基、N-苯乙基和 N-苄氧基苯甲酰胺衍生物可抑制淀粉样蛋白-β(Aβ42)的聚集并减轻 Aβ42 诱导的神经毒性","authors":"Yusheng Zhao, Arash Shakeri, Ahmed A. Hefny, Praveen P. N. Rao","doi":"10.1007/s00044-024-03256-6","DOIUrl":null,"url":null,"abstract":"<div><p>A library of <i>N</i>-benzylbenzamide, <i>N</i>-phenethylbenzamide and <i>N</i>-benzyloxybenzamide derivatives were designed, synthesized and evaluated as amyloid beta (Aβ42) aggregation inhibitors. These compounds were designed by replacing the α,β-unsaturated linker region of chalcone with an amide bioisostere. The Aβ42 aggregation inhibition properties of these 27 benzamide derivatives were evaluated by the thioflavin T (ThT)-based fluorescence aggregation kinetics assay, transmission electron microscopy (TEM) studies, Aβ42-induced cytotoxicity assay in mouse hippocampal neuronal HT22 cell lines, fluorescence live cell imaging, and computational modelling studies using a pentamer model of Aβ42. These studies led to the identification of <i>N</i>-benzylbenzamides <b>3a</b> and <b>3f</b>, <i>N</i>-phenethylbenzamide <b>5a</b> and <i>N</i>-benzyloxybenzamide <b>7a</b> as promising compounds that were able to exhibit anti-aggregation properties in the ThT-based fluorescence experiments, TEM studies and more significantly were able to rescue the hippocampal neuronal HT22 cells from Aβ42-induced cytotoxicity (91–96% cell viability at 25 µM). These results demonstrate the usefulness of these benzamide-based templates in the design and development of novel small molecules as chemical tools and therapeutics to study and treat Alzheimer’s disease.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":699,"journal":{"name":"Medicinal Chemistry Research","volume":"33 7","pages":"1229 - 1241"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N-Benzyl, N-phenethyl and N-benzyloxybenzamide derivatives inhibit amyloid-beta (Aβ42) aggregation and mitigate Aβ42-induced neurotoxicity\",\"authors\":\"Yusheng Zhao, Arash Shakeri, Ahmed A. Hefny, Praveen P. N. Rao\",\"doi\":\"10.1007/s00044-024-03256-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A library of <i>N</i>-benzylbenzamide, <i>N</i>-phenethylbenzamide and <i>N</i>-benzyloxybenzamide derivatives were designed, synthesized and evaluated as amyloid beta (Aβ42) aggregation inhibitors. These compounds were designed by replacing the α,β-unsaturated linker region of chalcone with an amide bioisostere. The Aβ42 aggregation inhibition properties of these 27 benzamide derivatives were evaluated by the thioflavin T (ThT)-based fluorescence aggregation kinetics assay, transmission electron microscopy (TEM) studies, Aβ42-induced cytotoxicity assay in mouse hippocampal neuronal HT22 cell lines, fluorescence live cell imaging, and computational modelling studies using a pentamer model of Aβ42. These studies led to the identification of <i>N</i>-benzylbenzamides <b>3a</b> and <b>3f</b>, <i>N</i>-phenethylbenzamide <b>5a</b> and <i>N</i>-benzyloxybenzamide <b>7a</b> as promising compounds that were able to exhibit anti-aggregation properties in the ThT-based fluorescence experiments, TEM studies and more significantly were able to rescue the hippocampal neuronal HT22 cells from Aβ42-induced cytotoxicity (91–96% cell viability at 25 µM). These results demonstrate the usefulness of these benzamide-based templates in the design and development of novel small molecules as chemical tools and therapeutics to study and treat Alzheimer’s disease.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":699,\"journal\":{\"name\":\"Medicinal Chemistry Research\",\"volume\":\"33 7\",\"pages\":\"1229 - 1241\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicinal Chemistry Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00044-024-03256-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00044-024-03256-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
N-Benzyl, N-phenethyl and N-benzyloxybenzamide derivatives inhibit amyloid-beta (Aβ42) aggregation and mitigate Aβ42-induced neurotoxicity
A library of N-benzylbenzamide, N-phenethylbenzamide and N-benzyloxybenzamide derivatives were designed, synthesized and evaluated as amyloid beta (Aβ42) aggregation inhibitors. These compounds were designed by replacing the α,β-unsaturated linker region of chalcone with an amide bioisostere. The Aβ42 aggregation inhibition properties of these 27 benzamide derivatives were evaluated by the thioflavin T (ThT)-based fluorescence aggregation kinetics assay, transmission electron microscopy (TEM) studies, Aβ42-induced cytotoxicity assay in mouse hippocampal neuronal HT22 cell lines, fluorescence live cell imaging, and computational modelling studies using a pentamer model of Aβ42. These studies led to the identification of N-benzylbenzamides 3a and 3f, N-phenethylbenzamide 5a and N-benzyloxybenzamide 7a as promising compounds that were able to exhibit anti-aggregation properties in the ThT-based fluorescence experiments, TEM studies and more significantly were able to rescue the hippocampal neuronal HT22 cells from Aβ42-induced cytotoxicity (91–96% cell viability at 25 µM). These results demonstrate the usefulness of these benzamide-based templates in the design and development of novel small molecules as chemical tools and therapeutics to study and treat Alzheimer’s disease.
期刊介绍:
Medicinal Chemistry Research (MCRE) publishes papers on a wide range of topics, favoring research with significant, new, and up-to-date information. Although the journal has a demanding peer review process, MCRE still boasts rapid publication, due in part, to the length of the submissions. The journal publishes significant research on various topics, many of which emphasize the structure-activity relationships of molecular biology.