最优控制中的内点法

P. Malisani
{"title":"最优控制中的内点法","authors":"P. Malisani","doi":"10.1051/cocv/2024049","DOIUrl":null,"url":null,"abstract":"This paper deals with Interior Point Methods (IPMs) for Optimal Control Problems (OCPs) with pure state and mixed constraints. This paper establishes a complete proof of convergence of IPMs for a general class of OCPs. Convergence results are proved for primal variables, namely state and control variables, and for dual variables, namely, the adjoint state, and the constraints multipliers. In addition, the presented convergence result does not rely on a strong convexity assumption. Finally, this paper compares the performances of a primal and a primal-dual implementation of IPMs in optimal control in three examples.","PeriodicalId":512605,"journal":{"name":"ESAIM: Control, Optimisation and Calculus of Variations","volume":"5 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interior point methods in optimal control\",\"authors\":\"P. Malisani\",\"doi\":\"10.1051/cocv/2024049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with Interior Point Methods (IPMs) for Optimal Control Problems (OCPs) with pure state and mixed constraints. This paper establishes a complete proof of convergence of IPMs for a general class of OCPs. Convergence results are proved for primal variables, namely state and control variables, and for dual variables, namely, the adjoint state, and the constraints multipliers. In addition, the presented convergence result does not rely on a strong convexity assumption. Finally, this paper compares the performances of a primal and a primal-dual implementation of IPMs in optimal control in three examples.\",\"PeriodicalId\":512605,\"journal\":{\"name\":\"ESAIM: Control, Optimisation and Calculus of Variations\",\"volume\":\"5 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM: Control, Optimisation and Calculus of Variations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/cocv/2024049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM: Control, Optimisation and Calculus of Variations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/cocv/2024049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文论述了具有纯状态和混合约束条件的最优控制问题(OCP)的内部点法(IPMs)。本文为一般类别的 OCP 建立了完整的 IPM 收敛性证明。本文证明了原始变量(即状态和控制变量)以及对偶变量(即邻接状态和约束乘数)的收敛结果。此外,本文提出的收敛结果并不依赖于强凸假设。最后,本文在三个例子中比较了最优控制中 IPM 的原始和原始-对偶实现的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interior point methods in optimal control
This paper deals with Interior Point Methods (IPMs) for Optimal Control Problems (OCPs) with pure state and mixed constraints. This paper establishes a complete proof of convergence of IPMs for a general class of OCPs. Convergence results are proved for primal variables, namely state and control variables, and for dual variables, namely, the adjoint state, and the constraints multipliers. In addition, the presented convergence result does not rely on a strong convexity assumption. Finally, this paper compares the performances of a primal and a primal-dual implementation of IPMs in optimal control in three examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信